Hooking to a C function - iphone

I am wondering how do I hook to a function that is in the dylib, i.e. a C function.
My target is to hook to a function CTRegistrationSetCellularDataIsEnabled that is in CoreTelephony.
Thanks!

You will need access to MobileSubtrate if you want any hope of hooking a dylib function, which is done like so (hooking a function called CFShow(), from here):
static void (*original_CFShow)(CFTypeRef obj); // a function pointer to store the original CFShow().
void replaced_CFShow(CFTypeRef obj) {
// our replacement of CFShow().
printf("Calling original CFShow(%p)...", obj);
original_CFShow(obj); // calls the original CFShow.
printf(" done.\n");
}
// hook CFShow to our own implementation.
MSHookFunction(CFShow, replaced_CFShow, &original_CFShow);
// From now on any call to CFShow will pass through replaced_CFShow first.
CFShow(CFSTR("test"));

You will need to use class dump to get the headers from the classes you need to use, and then call this function

Related

Multicast Delegates - C++

I would like to receive a multicast event from the LeapMotion plugin in C++. From their documentation, they mention the following things:
> On Hand Grabbed Event called when a leap hand grab gesture is
> detected. Signature: const FLeapHandData&, Hand, see FLeapHandData
>
> FLeapHandSignature OnHandGrabbed;
So in my .cpp file I added the following:
ALeapMotionGesture::ALeapMotionGesture()
{
PrimaryActorTick.bCanEverTick = true;
Leap = CreateDefaultSubobject<ULeapComponent>(TEXT("Leap"));
}
void ALeapMotionGesture::BeginPlay()
{
Super::BeginPlay();
if (Leap != nullptr) {
FScriptDelegate Delegate;
Delegate.BindUFunction(this, FName("HandGrabbed"));
Leap->OnHandGrabbed.Add(Delegate);
}
}
void ALeapMotionGesture::HandGrabbed(const FLeapHandData& Hand) {
UE_LOG(LogTemp, Warning, TEXT("Hand Grabbed"));
}
As it is the first time I'm using delegates in Unreal/C++, I would like to know how I could make it work?
It compiles fine however I do not receive any events.
Add UFUNCTION() on your function HandGrabbed
Short Answer
Replace:
void ALeapMotionGesture::BeginPlay()
{
Super::BeginPlay();
if (Leap != nullptr) {
FScriptDelegate Delegate;
Delegate.BindUFunction(this, FName("HandGrabbed"));
Leap->OnHandGrabbed.Add(Delegate);
}
}
with:
void ALeapMotionGesture::BeginPlay()
{
Super::BeginPlay();
if (Leap != nullptr) {
Leap->OnHandGrabbed.AddDynamic(this, &ALeapMotionGesture::HandGrabbed);
}
}
Long Answer
ULeapComponent::OnHandGrabbed is a FLeapHandSignature which is declared with DECLARE_DYNAMIC_MULTICAST_DELEGATE_OneParam.
The LeapMotion README says to consult the Multi-cast documentation, but they are using dynamic delegates, so you actually need to read the Dynamic Delegates documentation. There you will see you should use the AddDynamic helper macro which generates the function name string for you.
Dynamic Delegates make use of helper macros that take care of generating the function name string for you.
From the Dynamic Delegates doc:
Dynamic Delegate Binding
BindDynamic( UserObject, FuncName )
Helper macro for calling BindDynamic() on dynamic delegates.
Automatically generates the function name string.
AddDynamic( UserObject, FuncName )
Helper macro for calling AddDynamic() on dynamic multi-cast delegates.
Automatically generates the function name string.
RemoveDynamic( UserObject, FuncName )
Helper macro for calling RemoveDynamic() on dynamic multi-cast
delegates. Automatically generates the function name string.
Side Note
Dynamic delegates are serialized, which sometimes results in unexpected behavior. For example, you can have delegate functions being called even though your code is no longer calling AddDynamic (because a serialized/saved actor serialized the results of your old code) or you might call AddDynamic even though the deserialization process already did that for you. To be safe, you probably should call RemoveDynamic before AddDynamic. Here's a snippet from FoliageComponent.cpp:
// Ensure delegate is bound (just once)
CapsuleComponent->OnComponentBeginOverlap.RemoveDynamic(this, &AInteractiveFoliageActor::CapsuleTouched);
CapsuleComponent->OnComponentBeginOverlap.AddDynamic(this, &AInteractiveFoliageActor::CapsuleTouched);

va_arg prevents me from calling a managed delegate in a native callback

In a C++/CLI assembly, I'm trying to call a managed delegate from a native callback. I followed Doc Brown's answer here, and my implementation so far looks like this:
The native callback - ignore the commented out parts for now:
static ssize_t idaapi idb_callback(void* user_data, int notification_code, va_list va)
{
switch (notification_code)
{
case idb_event::byte_patched:
{
//ea_t address = va_arg(va, ea_t);
//uint32 old_value = va_arg(va, uint32);
return IdaEvents::BytePatched(0, 0);
}
break;
}
return 0;
}
As you can see above, I call this managed delegate instantiated in a static class:
public delegate int DatabaseBytePatchedHandler(int address, int originalValue);
private ref class IdaEvents
{
static IdaEvents()
{
BytePatched = gcnew DatabaseBytePatchedHandler(&OnDatabaseBytePatched);
}
public: static DatabaseBytePatchedHandler^ BytePatched;
private: static int OnDatabaseBytePatched(int address, int originalValue)
{
return 0;
}
};
This compiles fine. But the code is incomplete - remember the commented out part in the native callback above? I actually have to retrieve the values from the va_list passed to the callback, and pass those on to my managed delegate:
ea_t address = va_arg(va, ea_t);
uint32 old_value = va_arg(va, uint32);
return IdaEvents::BytePatched(address, old_value);
But as soon as I uncomment one of the lines using va_arg, I cannot compile the project anymore and retrieve the following errors marking the line where I call the managed delegate:
C3821 'IdaEvents': managed type or function cannot be used in an unmanaged function
C3821 'IdaEvents::BytePatched': managed type or function cannot be used in an unmanaged function
C3821 'BytePatched': managed type or function cannot be used in an unmanaged function
C3821 'DatabaseBytePatchedHandler::Invoke': managed type or function cannot be used in an unmanaged function
C3642 'int DatabaseBytePatchedHandler::Invoke(int,int)': cannot call a function with __clrcall calling convention from native code
C3175 'DatabaseBytePatchedHandler::Invoke': cannot call a method of a managed type from unmanaged function 'idb_callback'
This really confuses me. Why is the compiler suddenly acting up as soon as I try to use va_arg? Even a single line without any assignment causes this error to pop up.
Am I thinking too naive here? I'm obviously missing a piece of the puzzle, and any help supporting me in finding it is greatly appreciated.

D: Delegates or callbacks?

I found conception of Delegates pretty hard for me. I really do not understand why I can't simply pass one function to another and need to wrap it to Delegate. I read in docs that there is some cases when I do not know it's name and Delegate is only way to call it.
But now I have trouble in understanding conception of callbacks. I tried to find more information, but I can't understand is it's simply call of other function or what is it.
Could you show examples of D callbacks and explain where they can be helpful?
import vibe.d;
shared static this()
{
auto settings = new HTTPServerSettings;
settings.port = 8080;
listenHTTP(settings, &handleRequest);
}
void handleRequest(HTTPServerRequest req,
HTTPServerResponse res)
{
if (req.path == "/")
res.writeBody("Hello, World!", "text/plain");
}
&handleRequest is it callback? How it's work and at what moment it's start?
So within memory a function is just a pile of bytes. Like an array, you can take a pointer to it. This is a function pointer. It has a type of RETT function(ARGST) in D. Where RETT is the return type and ARGST are the argument types. Of course attributes can be applied like any function declaration.
Now delegates are a function pointer with a context pointer. A context pointer can be anything from a single integer (argument), call frame (function inside of another) or lastly a class/struct.
A delegate is very similar to a function pointer type at RETT delegate(ARGST). They are not interchangeable, but you can turn a function pointer into a delegate pointer pretty easily.
The concept of a callback is to say, hey I know you will know about X so when that happens please tell me about X by calling this function/delegate.
To answer your question about &handleRequest, yes it is a callback.
You can pass functions to other functions to later be called.
void test(){}
void receiver(void function() fn){
// call it like a normal function with 'fn()'
// or pass it around, save it, or ignore it
}
// main
receiver(&test); // 'test' will be available as 'fn' in 'receiver'
You need to prepend the function name as argument with & to clarify you want to pass a function pointer. If you don't do that, it will instead call that function due to UFCS (calling without braces). It is not a delegate yet.
The function that receives your callable may do whatever it wants with it. A common example is in your question, a web service callback. First you tell the framework what should be done in case a request is received (by defining actions in a function and making that function available for the framework), and in your example enter a loop with listenHTTP which calls your code when it receives a request. If you want to read more on this topic: https://en.wikipedia.org/wiki/Event_(computing)#Event_handler
Delegates are function pointers with context information attached. Say you want to add handlers that act on other elements available in the current context. Like a button that turns an indicator red. Example:
class BuildGui {
Indicator indicator;
Button button;
this(){
... init
button.clickHandler({ // curly braces: implicit delegate in this case
indicator.color = "red"; // notice access of BuildGui member
});
button.clickHandler(&otherClickHandler); // methods of instances can be delegates too
}
void otherClickHandler(){
writeln("other click handler");
}
}
In this imaginary Button class all click handlers are saved to a list and called when it is clicked.
There were several questions in the OP. I am going to try to answer the following two:
Q: Could you show examples of D callbacks and explain where they can be helpful?
A: They are commonly used in all languages that support delegates (C# for an example) as event handlers. - You give a delegate to be called whenever an event is triggered. Languages that do not support delegates use either classes, or callback functions for this purpose. Example how to use callbacks in C++ using the FLTK 2.0 library: http://www.fltk.org/doc-2.0/html/group__example2.html. Delegates are perfect for this as they can directly access the context. When you use callbacks for this purpose you have to pass along all the objects you want to modify in the callback... Check the mentioned FLTK link as an example - there we have to pass a pointer to the fltk::Window object to the window_callback function in order to manipulate it. (The reason why FLTK does this is that back FLTK was born C++ did not have lambdas, otherwise they would use them instead of callbacks)
Example D use: http://dlang.org/phobos/std_signals.html
Q: Why I can't simply pass one function to another and need to wrap it to Delegate?
A: You do not have to wrap to delegates - it depends what you want to accomplish... Sometimes passing callbacks will just work for you. You can't access context in which you may want to call the callback, but delegates can. You can, however pass the context along (and that is what some C/C++ libraries do).
I think what you are asking is explained in the D language reference
Quote 1:
A function pointer can point to a static nested function
Quote 2:
A delegate can be set to a non-static nested function
Take a look at the last example in that section and notice how a delegate can be a method:
struct Foo
{
int a = 7;
int bar() { return a; }
}
int foo(int delegate() dg)
{
return dg() + 1;
}
void test()
{
int x = 27;
int abc() { return x; }
Foo f;
int i;
i = foo(&abc); // i is set to 28
i = foo(&f.bar); // i is set to 8
}
There are already excellent answers. I just want to try to make simple summary.
Simply: delegate allows you to use methods as callbacks.
In C, you do the same by explicitly passing the object (many times named context) as void* and cast it to (hopefully) right type:
void callback(void *context, ...) {
/* Do operations with context, which is usually a struct */
doSomething((struct DATA*)context, ...);
doSomethingElse((struct DATA*)context, ...);
}
In C++, you do the same when wanting to use method as callback. You make a function taking the object pointer explicitly as void*, cast it to (hopefully) right type, and call method:
void callback(void* object, ...) {
((MyObject*)object)->method(...);
}
Delegate makes this all implicitly.

struct vs class for writing D wrappers around foreign languages

(note: this is related to Usage preference between a struct and a class in D language but for a more specific use case)
When writing a D interface to, say, C++ code, SWIG and others do something like this:
class A{
private _A*ptr;//defined as extern(C) elsewhere
this(){ptr=_A_new();}//ditto
this(string s){ptr=_A_new(s);} //ditto
~this(){_A_delete(ptr);} //ditto
void fun(){_A_fun(ptr);}
}
Let's assume no inheritance is needed.
My question is: wouldn't it be preferable to use a struct instead of a class for this?
The pros being:
1) efficiency (stack allocation)
2) ease-of-use (no need to write new everywhere, eg: auto a=A(B(1),C(2)) vs auto a=new A(new B(1),new C(2)) )?
The cons being:
require additional field is_own to handle aliasing via postblit.
What would be the best way to do so?
Is there anything else to worry about?
Here's an attempt:
struct A{
private _A*ptr;
bool is_own;//required for postblit
static A opCall(){//cannot write this() for struct
A a;
a.ptr=_A_new();
a.is_own=true;
return a;
}
this(string s){ptr=_A_new(s); is_own=true;}
~this(){if(is_own) _A_delete(ptr);}
void fun(){_A_fun(ptr);}
this(this){//postblit;
//shallow copy: I don't want to call the C++ copy constructor (expensive or unknown semantics)
is_own=false; //to avoid _A_delete(ptr)
}
}
Note the postblit is necessary for cases when calling functions such as:
myfun(A a){}
I suggest that you read this page. The only functions on C++ classes that you can call in D are virtual functions. That means that
D can­not call C++ spe­cial mem­ber func­tions, and vice versa. These in­clude con­struc­tors, de­struc­tors, con­ver­sion op­er­a­tors, op­er­a­tor over­load­ing, and al­lo­ca­tors.
And when you declare a C++ class in D, you use an extern(C++) interface. So, your class/struct would look like this
extern(C++) interface A
{
void fun();
}
However, you'd need another extern(C++) function to allocate any objects of type A, since it's C++ code that has to do that as the D code doesn't have access to any of the constructors. You'd also need a way to pass it back to C++ code to be deleted when you're done with it.
Now, if you want to wrap that interface in a type which is going to call the extern(C++) function to construct it and the extern(C++) function to delete it (so that you don't have to worry about doing that manually), then whether you use a class or struct depends entirely on what you're trying to do with it.
A class would be a reference type, which mirrors what the C++ class actually is. So, passing it around would work without you having to do anything special. But if you wanted a guarantee that the wrapped C++ object was freed, you'd have to do so manually, because there's no guarantee that the D class' finalizer would ever be run (and presumably, that's where you'd put the code for calling the C++ function to delete the C++ object). You'd have to either use clear (which will actually be renamed to destroy in the next release of the compiler - dmd 2.060) to destroy the D object (i.e. call its finalizer and handle the destruction of any of its member variables which are value types), or you'd have to call a function on the D object which called the C++ function to delete the C++ object. e.g.
extern(C++) interface A
{
void fun();
}
extern(C++) A createA();
extern(C++) void deleteA(A a);
class Wrapper
{
public:
this()
{
_a = createA();
}
~this()
{
deleteA(_a);
}
auto opDispatch(string name, Args...)(Args args)
{
return mixin("_a." ~ name ~ "(args)");
}
private:
A _a;
}
void main()
{
auto wrapped = new Wrapper();
//do stuff...
//current
clear(wrapped);
//starting with dmd 2.060
//destroy(wrapped);
}
But that does have the downside that if you don't call clear/destroy, and the garbage collector never collects your wrapper object, deleteA will never be called on the C++ object. That may or may not matter. It depends on whether the C++ object really needs its destructor to be called before the program terminates or whether it can just let its memory return to the OS (without its destructor being called) when the program terminates if the GC never needs to collect the wrapper object.
If you want deterministic destruction, then you need a struct. That means that you'll need to worry about making the struct into a reference type. Otherwise, if it gets copied, when one of them is destroyed, the C++ object will be deleted, and the other struct will point to garbage (which it will then try and delete when it gets destroyed). To solve that, you could use std.typecons.RefCounted. Then you get something like
extern(C++) interface A
{
void fun();
}
extern(C++) A createA();
extern(C++) void deleteA(A a);
struct Wrapper
{
public:
static Wrapper opCall()
{
Wrapper retval;
retval._a = createA();
return retval;
}
~this()
{
if(_a !is null)
{
deleteA(_a);
_a = null;
}
}
auto opDispatch(string name, Args...)(Args args)
{
return mixin("_a." ~ name ~ "(args)");
}
private:
A _a;
}
void main()
{
auto wrapped = RefCounted!Wrapper();
//do stuff...
}
You could also define the wrapper so that it has the ref-counting logic in it and avoid RefCounted, but that would definitely be more complicated.
Regardless, I would definitely advise against your suggestion of using a bool to mark whether the wrapper owns the C++ object or not, because if the original wrapper object gets destroyed before all of the copies do, then your copies will point to garbage.
Another option if you did want the C++ object's copy constructor to be used (and therefore treat the C++ object as a value type) would be to add an extern(C++) function which took the C++ object and returned a copy of it and then use it in a postblit.
extern(C++) A copyA(A a);
this(this)
{
if(_a !is null)
_a = copyA(a);
}
Hopefully that makes things clear enough.

Timer Thread with passed Function* and Param

I'm working on finishing up my server for my first iPhone application, and I want to implement a simple little feature.
I would like to run a function (perhaps method as well), if another function returns a certain value after a certain waiting period. Fairly simple concept.... right?
Here's my basic foundation.
template <typename T,class TYP>
struct funcpar{
T (*function)(TYP);
TYP parameter;
funcpar(T (*func)(TYP),TYP param);
funcpar& operator=(const funcpar& fp);
};
The goal here is to be able to call funcpar::function(funcpar::parameter) to run the stored function and parameter, and not have to worry about anything else...
When I attempted to use a void* parameter instead of the template, I couldn't copy the memory as an object (because I didn't know what the end object was going to be, or the beginning for that matter) and when I tried multiple timers, every single object's parameter would change to the new parameter passed to the new timer... With the previous struct I have a
question:
Is it possible to make an all-inclusive pointer to this type of object inside a method of a class? Can I templatize a method, and not the whole class? Would it work exactly like a function template?
I have a managing class that holds a vector of these "jobs" and takes care of everything fairly well. I just don't know how to use a templatized function with the struct, or how to utilize templates on a single method in a class..
I'm also utilizing this in my custom simple threadpool, and that's working fairly well, and has the same problems...
I have another question:
Can I possibly store a function with a parameter before it's run? Something like toRun = dontrunmeyet(withThisParameter);? Is my struct even necessary?
Am I going about this whole thing incorrectly?
If this is overly ambiguous, I can set you up with my whole code for context
In order to create a class method that takes a template parameter, yes, it would work almost exactly like a function template. For example:
class A
{
public:
template<typename T>
void my_function(const T& value) { }
};
int main()
{
A test;
test.my_function(5);
return 0;
}
Secondly, for your structure, you can actually turn that into a functor-object that by overloading operator(), lets you call the structure as-if it were a function rather than having to actually call the specific function pointer members inside the structure. For instance, your structure could be re-written to look like this:
#include <iostream>
template <class ReturnType, class ParameterType>
class funcpar
{
private:
ReturnType (*function)(ParameterType);
ParameterType parameter;
public:
funcpar(ReturnType (*func)(ParameterType),ParameterType param):
function(func), parameter(param) {}
funcpar& operator=(const funcpar& fp);
//operator() overloaded to be a function that takes no arguments
//and returns type ReturnType
ReturnType operator() ()
{
return function(parameter);
}
};
int sample_func(int value)
{
return value + 1;
}
int main()
{
funcpar<int, int> test_functor(sample_func, 5);
//you can call any instance of funcpar just like a normal function
std::cout << test_functor() << std::endl;
return 0;
}
BTW, you do need the functor object (or your structure, etc.) in order to bind a dynamic parameter to a function before the function is called in C/C++ ... you can't "store" a parameter with an actual function. Binding a parameter to a function is actually called a closure, and in C/C++, creating a closure requires a structure/class or some type of associated data-structure you can use to bind a function with a specific parameter stored in memory that is used only for a specific instance of that function call.