Firstly, i want know if the PByte type is equivalent to a BYTE*(byte pointer) in C++. In negative case, what's could be on Delphi that more near to BYTE* of C++?
Well, suppose that i'm right about that PByte is BYTE* (C++), then based on following C++ code, how send() this data type (PByte) correctly using native WinSock?
See:
C++:
SOCKET sock;
BITMAPINFO bmpInfo;
BYTE *bytes = NULL;
BYTE *temp_bytes = NULL;
DWORD workSpaceSize, fragmntWorkSpaceSize, size;
RtlGetCompressionWorkSpaceSize(COMPRESSION_FORMAT_LZNT1, &workSpaceSize, &fragmntWorkSpaceSize);
bytes = (BYTE *) Alloc(bmpInfo.bmiHeader.biSizeImage);
temp_bytes = (BYTE *) Alloc(bmpInfo.bmiHeader.biSizeImage);
BYTE *memory = (BYTE *) Alloc(workSpaceSize);
RtlCompressBuffer(COMPRESSION_FORMAT_LZNT1,
bytes,
bmpInfo.bmiHeader.biSizeImage,
temp_bytes,
bmpInfo.bmiHeader.biSizeImage,
2048,
&size,
memory);
free(bytes);
free(memory);
if(Send(sock, (char *) temp_bytes, size, 0) <= 0) return;
free(temp_bytes);
Delphi:
var
Sock: TSocket;
bmpInfo: TBitMapInfo;
bytes: PByte = nil;
temp_bytes: PByte = nil;
memory: PByte;
workSpaceSize, fragmntWorkSpaceSize, Size: Cardinal;
//...
RtlGetCompressionWorkSpaceSize(COMPRESSION_FORMAT_LZNT1, #workSpaceSize, #fragmntWorkSpaceSize);
bytes := AllocMem(bmpInfo.bmiHeader.biSizeImage);
temp_bytes := AllocMem(bmpInfo.bmiHeader.biSizeImage);
memory := AllocMem(workSpaceSize);
RtlCompressBuffer(COMPRESSION_FORMAT_LZNT1, bytes, bmpInfo.bmiHeader.biSizeImage,
temp_bytes, bmpInfo.bmiHeader.biSizeImage, 2048, #Size, memory);
FreeMem(bytes);
FreeMem(memory);
if send(Sock, temp_bytes^, Size, 0) <= 0 then Exit;
FreeMem(temp_bytes);
Reference to RtlGetCompressionWorkSpaceSize() and RtlCompressBuffer() functions in C++.
Reference to RtlGetCompressionWorkSpaceSize() and RtlCompressBuffer() functions in Delphi.
I am implementing AES decoder, for creating IV and key, the algorithm is such that
IV Key's 16 bytes:the first 16 bytes of ProductID.getBytes("UTF-8")
(If there are no enough bytes,
make up to 16 bytes at right by 0x32)
and my code for padding
- (char*)paddedStringFromString:(NSString *)string withLength:(NSUInteger)length{
const char *stringC = [string UTF8String];
char * output;
output = malloc(length+1);
for (NSInteger i = 0; i < length; i++) {
if (i < string.length) output[i] = stringC[i];
else output[i] = 0x32;
}
return output;
}
But I am not getting the right result. Is my approach for padding is right. Please help
I think the args length and string.length are not the same, right?
Can anyone help converting the Int to char array
as i have buffer as
char *buffer = NULL;
int lengthOfComponent = -1;
char *obj;
buffer[index]= (char *)&lengthOfComponent;
if i do this it is thorwing EXCESS BAD ACCESS after the execution how to store the value of the obj to buffer using memcpy
Of course you cannot write in buffer[index], it is not allocated!
buffer = malloc(sizeof(char) * lengthOfBuffer);
should do it. After that you can write the buffer with memcpy or with an assignation, like you are doing.
buffer[index] = (char *)&lengthOfComponent;
buffer[index] is like dereferencing the pointer. But buffer is not pointing to any valid location. Hence the runtime error.
The C solution is using snprintf. Try -
int i = 11;
char buffer[10];
snprintf(buffer, sizeof(buffer), "%d", i);
I have this method to make a xor between 2 NSStrings, i´m printing the result on NSLog but it isn´t the expect.
Can´t figure out what i´m doing wrong.
(void)XorSecretKeyDeviceId
{
NSString* secretKey = #"123";//
NSString* deviceId = #"abcdef";//
NSData* stringKey = [secretKey dataUsingEncoding:NSUTF8StringEncoding];
NSData* stringDeviceId = [deviceId dataUsingEncoding:NSUTF8StringEncoding];
unsigned char* pBytesInput = (unsigned char*)[stringKey bytes]; //Bytes
unsigned char* pBytesKey = (unsigned char*)[stringDeviceId bytes];
unsigned int vlen = [secretKey length]; //Keys Length
unsigned int klen = [deviceId length];
unsigned int v;
unsigned int k = vlen % klen;
unsigned char c;
for(v = 0; v < vlen; v++)
{
c = pBytesInput[v] ^ pBytesKey[k];
pBytesInput[v] = c;
NSLog(#"%c", c);
k = (++k < klen ? k : 0);
}
}
Are you setting your pBytesInput and pBytesKey variables correctly? At the moment, you have unsigned char* pBytesInput = (unsigned char*)[stringKey bytes]; (i.e. the input is the "key"), and pBytesKey is the device ID. This seems odd.
Also, be careful using UTF-8 encoding. UTF-8 uses the high bit on any byte in the string to indicate a "continuation" of a multi-byte character into the next byte. Your encoding could plausibly generate invalid UTF-8 by giving the setting the high bit of the final byte in the encryption.
For more than that, you'll have to say what the "wrong result" is.
I am trying to encode series of images to one video file. I am using code from api-example.c, its works, but it gives me weird green colors in video. I know, I need to convert my RGB images to YUV, I found some solution, but its doesn't works, the colors is not green but very strange, so thats the code:
// Register all formats and codecs
av_register_all();
AVCodec *codec;
AVCodecContext *c= NULL;
int i, out_size, size, outbuf_size;
FILE *f;
AVFrame *picture;
uint8_t *outbuf;
printf("Video encoding\n");
/* find the mpeg video encoder */
codec = avcodec_find_encoder(CODEC_ID_MPEG2VIDEO);
if (!codec) {
fprintf(stderr, "codec not found\n");
exit(1);
}
c= avcodec_alloc_context();
picture= avcodec_alloc_frame();
/* put sample parameters */
c->bit_rate = 400000;
/* resolution must be a multiple of two */
c->width = 352;
c->height = 288;
/* frames per second */
c->time_base= (AVRational){1,25};
c->gop_size = 10; /* emit one intra frame every ten frames */
c->max_b_frames=1;
c->pix_fmt = PIX_FMT_YUV420P;
/* open it */
if (avcodec_open(c, codec) < 0) {
fprintf(stderr, "could not open codec\n");
exit(1);
}
f = fopen(filename, "wb");
if (!f) {
fprintf(stderr, "could not open %s\n", filename);
exit(1);
}
/* alloc image and output buffer */
outbuf_size = 100000;
outbuf = malloc(outbuf_size);
size = c->width * c->height;
#pragma mark -
AVFrame* outpic = avcodec_alloc_frame();
int nbytes = avpicture_get_size(PIX_FMT_YUV420P, c->width, c->height);
//create buffer for the output image
uint8_t* outbuffer = (uint8_t*)av_malloc(nbytes);
#pragma mark -
for(i=1;i<77;i++) {
fflush(stdout);
int numBytes = avpicture_get_size(PIX_FMT_YUV420P, c->width, c->height);
uint8_t *buffer = (uint8_t *)av_malloc(numBytes*sizeof(uint8_t));
UIImage *image = [UIImage imageNamed:[NSString stringWithFormat:#"10%d", i]];
CGImageRef newCgImage = [image CGImage];
CGDataProviderRef dataProvider = CGImageGetDataProvider(newCgImage);
CFDataRef bitmapData = CGDataProviderCopyData(dataProvider);
buffer = (uint8_t *)CFDataGetBytePtr(bitmapData);
avpicture_fill((AVPicture*)picture, buffer, PIX_FMT_RGB8, c->width, c->height);
avpicture_fill((AVPicture*)outpic, outbuffer, PIX_FMT_YUV420P, c->width, c->height);
struct SwsContext* fooContext = sws_getContext(c->width, c->height,
PIX_FMT_RGB8,
c->width, c->height,
PIX_FMT_YUV420P,
SWS_FAST_BILINEAR, NULL, NULL, NULL);
//perform the conversion
sws_scale(fooContext, picture->data, picture->linesize, 0, c->height, outpic->data, outpic->linesize);
// Here is where I try to convert to YUV
/* encode the image */
out_size = avcodec_encode_video(c, outbuf, outbuf_size, outpic);
printf("encoding frame %3d (size=%5d)\n", i, out_size);
fwrite(outbuf, 1, out_size, f);
free(buffer);
buffer = NULL;
}
/* get the delayed frames */
for(; out_size; i++) {
fflush(stdout);
out_size = avcodec_encode_video(c, outbuf, outbuf_size, NULL);
printf("write frame %3d (size=%5d)\n", i, out_size);
fwrite(outbuf, 1, outbuf_size, f);
}
/* add sequence end code to have a real mpeg file */
outbuf[0] = 0x00;
outbuf[1] = 0x00;
outbuf[2] = 0x01;
outbuf[3] = 0xb7;
fwrite(outbuf, 1, 4, f);
fclose(f);
free(outbuf);
avcodec_close(c);
av_free(c);
av_free(picture);
printf("\n");
Please give me advice how to fix that problem.
You can see article http://unick-soft.ru/Articles.cgi?id=20. But it is article on Russian, but it includes code samples and VS Example.
Has anyone found a fix for this? I am seeing the green video problem on the decode side. That is, when I decode incoming PIX_FMT_YUV420 packets and then swsscale them to PIX_FMT_RGBA.
Thanks!
EDIT:
The green images are probably due to an arm optimization backfiring. I used this to fix the problem in my case:
http://ffmpeg-users.933282.n4.nabble.com/green-distorded-output-image-on-iPhone-td2231805.html
I guess the idea is to not specify any architecture (the config will you a warning about the architecture being unknown but you can continue to 'make' anyway). That way, the arm optimizations are not used. There maybe a slight performance hit (if any), but atleast it works! :)
I think the problem is most likely that you are using PIX_FMT_RGB8 as your input pixel format. This does not mean 8 bits per channel like the commonly used 24-bit RGB or 32-bit ARGB. It means 8 bits per pixel, meaning that all three color channels are housed in a single byte. I am guessing that this is not the format of your image since it is quite uncommon, so you need to use PIX_FMT_RGB24 or PIX_FMT_RGB32 depending on whether or not your input image has an alpha channel. See this documentation page for info on the pixel formats.