I'm wondering if for simply communicating with a PLC, like reading and writing tags, do I need all of the other heavy lifting that comes with an OPC-UA server?
I've tried writing a simple server in Python that talks to the PLC, but I get denied when requesting information from the PLC.
The Controllogix PLC I'm attempting to communicate with uses Ethernet/IP to communicate, so why doesn't a simple server/client script work? What is required exactly to communicate with an Allen Bradley PLC or PLC's in general?
There is quite a bit required to communicate with a PLC.
Each vendor has a driver, there are firmware compatibility considerations. Different protocols to think about.
OPC-UA makes it a bit more generic, but OPC-UA still has a set of things to work around when setting up communications.
Most of the OPC products I've worked with, needs to have their security adjusted to allow anonymous communication. It's generally bad practice to do this. (A network intrusion would be able to read/write to your automation layer) There is certificate signing and some encryption business that needs to be turned off if you're looking for simple communication. (Again, not a good practice but ok for learning)
After all that you have to have a notion of how your PLC is set up on your OPC server, there are channels, devices, namespaces etc. You'll point the OPC client to some opc.tcp://:
If you got this far you're almost done, I'm assuming your OPC server is running and has tags configured at this point. You can use your OPC-UA API to do a read. It can return just the value, or you can get an object back with tag health, timestamp, and a bunch of other data. Depends on the implementation. After that you can do subscriptions, writes...whatever else you need.
TLDR: OPC server not required, but may be the easiest method. Turn off security. (But turn it back on before exposing your control layer to the net)
I am also a little late to this conversation. If you are interested in coding your own solutions and don't want to use any of the commercially available standards, AdvancedHMI is a "mostly" open source solution written in VB.NET which is 100% free and provides communications to many different PLCs including the ControlLogix platform. Since I see you are programming in Python you may also be interested to know that the project does work under Mono on the Linux OS. I have used it to write gateways between EthernetIP and ModbusTCP and to pull data serially from OEM devices and push this data to a CLX PLC.
The forum is full of many helpful hints and is very active and supported.
Just trying to give you another option. DDE, NetDDE, FastDDE, OPC, DCOM, Suitelink.... These are all good, but mostly a pay to play adventure. As a programmer, it seems ridiculous to have to pay such an excessive amount of money just to talk to my hardware, IMHO. Sorry for the rant. Have Fun!
Update - Just wanted to also suggest the following open source project written in python:
https://github.com/dmroeder/pylogix
I have used this to write small programs for communicating with CompactLogix and ControlLogix. (Even to/from a RaspberryPi!)
Depends on several factors, if you want something simple to program you can opt for Modbus/TCP I think some AB PLC supports it without extra hardware.
However if you want something with more security for example for industrial use then OPC UA would be better choice but the programming has a complexity far higher than Modbus, even using the libraries of OPC Foundation or others. There is the option of using a commercial or free (if any) OPC UA server to save work, then you will need to program the client side only.
With Ethernet/IP it should also be possible, but the problem is that there is no clear specification and even different AB models talk different Ethernet/IP dialect ! , it is also far more complex to program than Modbus.
I am a little late to this discussion, but there are a couple commercial tools that make this a bit easier. The one that comes to mind for me when you say you are using python is Cogent's data hub. It is certainly not the cheapest tool out there, but they have already done all of the heavy lifting for PLC/PC communications & security.
If trying to read CLX data using Python, there are several open source implementations that will save you a lot of work. Such as this:
https://github.com/dmroeder/pylogix
If you use .NET and Visual Studio, you can use AdvancedHMI
to be able to read and write OPC Tags to ControlLogix platform is done via its communication Driver RSLinx. RSLinx acts as an OPC Server, it will need to be configured to communicate with the PLC and run on a networked PC on the same LAN. Several flavours of RSLinx are available (for WAN/VLAN also) but essentially this is the communications driver you need to talk to AB PLC's
Say we have a SystemC model of decade counter and I want to verify SystemVerilog Counter RTL using SystemC model. How can we connect these two in SV/UVM based testbench so as to communicate between them.
Mentor developed a free package called UVMConnect that was developed specifically for the application you are asking about. See https://verificationacademy.com/topics/verification-methodology/uvm-connect. You will need a simulator that supports SystemVerilog and SystemC simulating together, like Questa.
If you're using QuestaSim I think UVM-connect from Mentor is the way to go. When I first used it(4 years ago) it was very buggy and gave the most cryptic segfault errors I've ever seen. But, with help from the Mentor support I managed to overcome them and get stuff done. It should be more stable now, but if you have problems with it don't hesitate to contact Mentor support. They are very responsive.
However, if you're using Cadence tools and/or the e language I think that UVM-ML from Cadence is a much more comprehensive solution. It allows you to connect components written in any combination of languages(SV-SC, SV-e, SC-e) and it has nicer documentation and examples. I understand it's also compatible with all simulators now. You can find it here : http://forums.accellera.org/files/file/65-uvm-ml-open-architecture/
Not sure what Synopsis folks recommend for their tool suite. Maybe someone who used them can offer more information on this. But I'm guessing that both UVM-ML and UVM-Connect could work since their makers claim that they are portable.
And lastly, if you're planning to use SystemC as a verification language(very unlikely but just for the sake of diversity) there is something called UVM-SystemC which is basically a clone of SV-UVM written in C++/SystemC. It's currently in its alpha release and it lacks many features(register modeling, constrained randomization, coverage collection, etc.). It feels a lot like SV-UVM and I think it's a nice toy to play with in your spare time if you can't afford a commercial simulator license. You can find it here http://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-alpha1.tar.gz
Although I have implemented many projects in C, I am completely new to operating systems. I tried real time linux on Discovery board (STM32) and got the correct results for blinking LED but I didn't really understand the whole process since I just followed the steps and could not find whole description for each step on the internet.
I want to implement scheduling on real time linux. What is the best way to start? Any sites, books, tutorials available?
Complete RTLinux process description will be appreciated.
Thanks in adv.
The transition from "bare metal" to OS based programming is something that I experienced in reverse. I started out a complete software guy, totally into the OS side of things and over time I have moved to the opposite of that (even designing circuits in VHDL!). My advice would be to start simple. Linux is pretty complex, and everywhere you look there are many layers of things all working together to deliver the final product. If you are dead set on a real time linux extension, I'd be happy to suggest https://xenomai.org/ which is a real time extension for linux.
However, to more specifically address your question about implementing scheduling in Linux, you can, but it will be a large amount of work and can be very complicated. The OS uses a completely fair scheduling process ( http://en.wikipedia.org/wiki/Completely_Fair_Scheduler ) and whenever you spin up a thread, it simply gets added to the list to run. This can differ slightly if you implement your code in kernel space as a driver, rely on hardware interrupts, etc., but in general, this is how Linux works. Real time generally means that it has the ability to assign threads one of several different priorities and utilize thread preemption fully at any given time which are concepts that aren't really a part of vanilla Linux. It has some notion of this, but it has limitations that can cause problems when you are looking for real time behavior from Linux.
What may be helpful to you is an RTOS. If you are looking for a full on Real Time Operating System, check out FreeRTOS http://www.freertos.org/ . It has a large community and supports a lot of different devices out of the box with a large amount of example code. They even support your specific board with an example package, so you can give it a shot with nothing to lose! http://www.freertos.org/FreeRTOS-for-Cortex-M3-STM32-STM32F100-Discovery.html . It gives you access to many OS ish constructs like network APIs, memory management, and threading without the overhead and latency of a huge OS. With an RTOS, you create tasks and assign them priorities so you become the scheduler and are no longer at the mercy of the OS. You run the OS, not the OS runs you (if that makes sense). Plus, the constructs offered within an RTOS will feel much like bare metal code and thus will be much easier to follow, understand, and fully learn. It is a more simple world to learn the base building blocks of a full blown OS such as Linux or Windows. If this option sounds good, I would suggest looking through the supported devices on FreeRTOS website and picking one you would like to experiment with and then go for it. I would highly recommend this as a way to learn about scheduling and OS constructs in general as it is as simple as you can get and open source. Once you have the basics of an RTOS down, buying a book about Linux specifically wouldn't be a bad idea. Although there are many free resources on the web related to learning about Linux, they are commonly contradictory, and can be misleading. Pile on learning Linux specific knowledge along with OS in general, and it can feel overwhelming. Starting simpler will help keep you from getting burnt out and minimize the amount of time you spend feeling lost. Linux is definitely a learning process, but like with any learning process, start simple, keep your ultimate goal in mind, make a plan, and take small, manageable steps along that plan until you look up and find yourself exactly where you want to be. Then go tackle the next mountain!
The real-time Linux landscape is quite confusing. 99.99% of the information out there is just plain obsolete.
First, there are lots of "microkernels" that run Linux as one task. (Such as the defunct RTLinux). The problem is that you must write your real-time task to a different API, and can't depend on anything in Linux, because Linux will be frozen in the background while your task runs. So unless your task is dead-simple ("stop the motors when I press this button"), this approach will cause more pain than gain.
Next, there is the realtime Linux patch set. This hasn't been doing so well. because of the next item:
Lastly, the current Linux kernel has gotten rid of the problems that caused people to need realtime in the past. You can even turn off Linux on one of your processors to have full control of the CPU. See also this paper.
To answer your question: I see two different paths you could take:
1) Start with a normal 3.xx Linux kernel and explore the various APIs and realtime techniques (i.e. realtime priorities, memory pinning, etc.) This can get you "close enough" for 99% of what people want "realtime" for. If it's good enough for high frequency trading, it's probably good enough for you.
2) If you have a hard realtime requirement and you are worried that Linux won't cut it, then (as Nick mentioned above), just go buy a processor and write your realtime code with no OS. By splitting up your "realtime" and "non-realtime" code onto different CPUs, you will make the whole system simpler and much more robust.
If you want to learn real-time operating systems then I suggest that you get an FPGA, for example the Altera DE2, and experiment with your own operating system and ucos. You can read a good text about embedded RTOS here.
You could also get a Linux Raspberry and write your own operating system for that.
A friend has asked if I could implement a data historian. I am busy doing research, googling around, reading UPC Unified Architecture - but it's a lot to get through, so I will ask if anyone here has ever gone down that road (while still continuing my research).
Approx how many man months for a 20+ year developer (or two) to get at least a demonstrable working prototype - and how long to completion?
Which programming language? Is C++ good, or what?
What resources are available to me? (I thought I saw an Open OPC framework, but can't find it again). Any FOSS, libraries or free code which I can base upon? Maybe a sourceForge project?
How best to test?
Any other hints?
In my company we use mostly to brand of Historian, PI developped by OSISoft and GE Profecy Historian. Ge Profecy now offers a 25 tag version of their latest Historian 4.5. The way it works is you got an historian server that collects from data collector pc's. Depending what piece of equipment you are communicating with you'll need different OPC driver.
Matrikon and Kepware are the 2 references in that field. At Matrikon you'll find almost anything related to OPC. We mostly use Kepware, cause we felt their solutions are more stable on the long run.
Depending of your knowledge of the PLC's you have in place and the number of point you want to acquire. It might take a day to a week implementing an historian. I'll be more than happy to help you if you provide us with more details.
It would be interesting if you can do a write up of your project when you complete it.
For OPC libraries your pretty limited, but OPC Connect has a good list of UA development kits otherwise you'll need to be a corporate member with the OPC Foundation.
This is an old topic, but I'm interested in the subject.
There is a Python library for OPC: openopc at SourceForge.net (I use a proprietary OPC client because it is provided by my automation supplier, Yokogawa.)
For short-term data grabs you can use a delimited text file, but for a historian you ought to use a database. I use SQLite for speed, size, and portability. Other DB solutions have advantages. Of course if you collect 400 points every second then over time your DB grows quite quickly, so efficient data storage is important.
Language used is influenced by your choice of OPC package. OpenOPC for Python is, well yes, for Python. I've used Graybox's free OPC client with .Net. The OCX I use at work is easiest to use with VB6. Not sure about others.
The time required to build a historian depends entirely on how complete the application needs to be. You can probably put together a data grabber in a few hours. A long-term historian with interfaces to view data, to add and delete points, to maintain data integrity, to handle bad data and interrupted communications gracefully -- all that will take days, not hours.
As it currently stands, this question is not a good fit for our Q&A format. We expect answers to be supported by facts, references, or expertise, but this question will likely solicit debate, arguments, polling, or extended discussion. If you feel that this question can be improved and possibly reopened, visit the help center for guidance.
Closed 10 years ago.
I am toying with the idea of creating an completely new operating system and would like to hear what everyone on this forums take is on that? First is it too late are the big boys so entrenched in our lives that we will never be able to switch (wow - what a terrible thought...). But if this is not the case, what should a operating system do for you? What features are the most important? Should all the components be separate installations (in other words - should the base OS really have no user functionality and that gets added on by creating "plug-ins" kind of like a good flexible tool?)
Why do I want to do this... I am more curious about whether there is a demand and I am wondering, since the OSes we use most today (Linux, Windows, Mac OS X (Free BSD)) were actually written more than 20 years ago (and I am being generous - I mean dual and quad cores did not exist back then, buses were much slower, hardware was much more expensive, etc,...), I was just curious with the new technology if we would do anything differently?
I am anxious to read your comments.
To answer the first question: It's never too late. Especially when it comes to niche market segments and stuff like that.
Second though, before you start down the path of creating a new OS, you should understand the kind of undertaking it is: it'd be a massive project.
Is it just a normal programmer "scratch the itch" kind of project? If so, then by all means go ahead -- you might learn alot of things by doing it. But if you're doing it for the resulting product, then you shouldn't start down that path until you've looked at all the current OSes under development (there are alot more than you'd think at first) and figured out what you'd like to change in them.
Quite possibly the effort would be better spent improving/changing an existing open source system. Even for your own experimentation, it may be easier to get the results you want if you start out with something already in development.
First, a little story. In 1992, during the very first Win32 ( what would become the MS Professional Developers Conference ) conference, I had the opportunity to sit with over some lunch with one Mr. Dave Cutler ( Chief Architect of what most folks would now know as Windows NT,Windows 2000, XP, etc. ).
I was at the time working on the Multimedia group at IBM Boca Raton on what some of you might remember, OS/2. Having worked on OS/2 for several years, and recognizing "the writing on the wall" of where OSes were going, I asked him, "Dave, is Windows NT going to take us into the next century or are there other ideas on your mind ?". His answer to me was as follows:
"M...., Windows NT is the last operating system anyone will ever develop from scratch !". Then he looked over at me, took a sip of his beer, and said, "Then again, you could wake up next Saturday after a particularly good night out with your girl, and have a whole new approach for an operating system, that'll put this to shame."
Putting that conversation into context, and given the fact I'm back in college pursuing my Master's degree ( specializing in Operating Systems design ), I'd say there's TONS of room for new operating systems. The thing is to put things into perspective. What are your target goals for this operating system ? What problem space is it attempting to service ?
Putting this all into perspective will give you an indication of whether you're really setting your sights on an achievable goal.
That all being said, I second an earlier commenters note about looking into things like "Singularity" ( the focus of a talk I gave this past spring in one of my classes .... ), or if you really want to "sink your teeth into" an OS in its infancy....look at "ReactOS".
Then again, WebOSes, like gOS, and the like, are probably where we're headed over the next decade or so. Or then again, someone particularly bright could wake up after a particularly fruitful evening with their lady or guy friend, and have the "next big idea" in operating systems.
Why build the OS directly on a physical machine? You'll just be mucking around in assembly language ;). Sure, that's fun, but why not tackle an OS for a VM?
Say an OS that runs on the Java/.NET/Parrot (you name it) VM, that can easily be passed around over the net and can run a bunch of software.
What would it include?
Some way to store data (traditional FS won't cut it)
A model for processes / threads (or just hijack the stuff provided by the VM?)
Tools for interacting with these processes etc.
So, build a simple Platform that can be executed on a widely used virtual machine. Put in some cool functionality for a specific niche (cloud computing?). Go!
For more information on the micro- versus monolithic kernel, look up Linus' 'discussion' with Andrew Tanenbaum.
I would highly suggest looking at an early version on linux(0.01) to at least get your feet wet. You're going to mucking about with assembly and very obscure low-level stuff to even get started (especially getting into protected mode, multi-tasking, etc). And yes, it's probably true that the "big boys" already have the market cornered. I'm not telling you NOT to do it, but maybe doing some work on the linux kernel would be a better stepping stone.
Check out Cosmos and Singularity, these represent what I want from a futuristic operating system ;-)
Edit :
SharpOS is another managed OS effort. Suggested by yshuditelu
An OS should have no user functionality at all. User functionality should be added by separate projects, which does not at all mean that the projects should not work together!
If you are interested in user functionality maybe you should look into participating in existing Desktop Environment projects such as GNOME, KDE or something.
If you are interested in kernel-level functionality, either try hacking on a BSD derivate or on Linux, or try creating your own system -- but don't think too much about the user functionality then. Getting the core of an operating system right is hard and will take a long time -- wanting to reinvent everything does not make much sense and will get you nowhere.
You might want to join an existing OS implementation project first, or at least look at what other people have implemented.
For example AROS has been some 10 or more years in the making as a hobby OS, and is now quite usable in many ways.
Or how about something more niche? Check out Symbios, which is a fully multitasking desktop (in the style of Windows) operating system - for 4MHz Z80 CPUs (Amstrad CPC, MSX). Maybe you would want to write something like this, which is far less of a bite than a full next-generation operating system.
Bottom line...focus on your goals and even more importantly the goals of others...help to meet those needs. Never start with just technology.
I'd recommend against creating your own Operating System. (My own geeky interruption...Look into Cloud Computing and Amazon EC2)
I totally agree that it would first help by defining what your goals are. I am a big fan of User Experiences and thinking of not only your own goals but the goals of your audience/users/others. Once you have those goals, then move to the next step of how to meet it.
Now days what is an Operation System any way? kernal, Operating System, Virtual Server Instance, Linux, Windows Server, Windows Home, Ubuntu, AIX, zSeries OS/390, et al. I guess this is a good definition of OS... Wikipedia
I like Sun's slogan "the Network is the computer" also...but their company has really fallen in the past decade.
On that note of the Network is the computer... again, I highly recommend, checking out Amazon EC2 and more generally cloud computing.
I think that building a new OS from scratch to resemble the current OSes on the market is a waste of time. Instead, you should think about what Operating System will be like 10-20 years from now. My intuition is that they will be so different as to render them mostly unrecognizable by today's standards. Think of frameworks such as Facebook (gasp!) for models of how future OSes will operate.
I think you're right about our current operating systems being old. Someone said that all operating systems suck. And yes, don't we have problems with them? Call it BSOD, Sad Mac or a Kernel Panic. Our filesystems fail, there are security and reliability problems.
Microsoft pursued interesting approach with its Singularity kernel. It isolates processes in software, using a virtual machine similar to .NET, and formal verification methods. Basically all IPC seems to be formally specified and verified, even before a program is ran.
But there's another problem with it - Singularity is only a kernel. You can't run application not designed for it on it. This is a huge penalty, making eventual transition (Singularity is not public) quite hard. If you manage to produce something of similar technical advantages, but with a real transition plan (think about IPv4->IPv6 problems, or how Windows got so much market share on desktop), that could be huge!
But starting small is not a bad choice either. Linux started just like this, and there are many cases when it leads to better design. Small is beautiful. Easier to change. Easier to grow. Anyway, good luck!
checkout singularity project,
do something revolutionary
I've always wanted an operating system that was basically nothing but a fresh slate. It would have built in plugin support which allow you to build the user interface, applications, whatever you want.
This system would work much like a Lua sandbox to a game would work, minus the limitations. You could build a plugin or module system that would have access to a variety of subsystems that you would use. For example, if you were to write a web browser application, you would need to load the networking library and use that within your plugin script. Need 'security' ? Load the library.
The difference between this and Linux is that, Linux is an operating system but has a windows manager that runs over top of it. In this theoretical operating system, you would be able to implement the generic "look" and "feel" of a variety of windows within the plugin system, or could you create a custom interface.
The difference between this and Windows is that its fully customizable, and by fully I mean if you wanted to not implement any cryptography at all, you can do that, or if you wanted to customize an already existing window, you can do that. Nothing is closed to you.
In this theoretical operating system, there is an OS with a plugin system. The plugin system uses a simple and powerful language.
If you're asking what I'd like to see in an operating system, I can give you a list. I am just getting into programming so I'm not sure if any of this is possible, but I can give you my ideas.
I'd like to see a developed operating system (besides the main ones) in which it ISN'T a pain to get the wireless card to work. That is my #1 pet peeve with most of the ones I've tried out.
It would be cool to see an operating system designed by a programmer for other programmers. Have it so you can run programs for all different operating systems. I don't know if that's possible without having a copy of windows and OSX but it would be really damn cool if I could check the compatablity of programs I write with all operating systems.
You could also consider going with MINIX which is a good starting point.
To the originator of this forum, my hats off to you sir for daring to think in much bolder and idealistic terms regarding the IT industry. First and foremost, Your questions are precisely the kind you would think should engage a much broader audience given the flourishing Computer Sciences all over the globe & the openness taught to us by the Revolutionary Linux OS, which has only begun to win the hearts and minds of so many out there by way of strengthing its user-friendly interface. So kudos on pushing the envelope.
If I'm following correctly, you are supposing that given the fruits of our labor thus far, the development of further hardware & Software concoctions could or at least should be less conventional. The implication, of course, is that any new development would reach its goal faster than what is typical. The prospect, however, of an entirely new OS system #this time would be challenging - to say the least - only because there is so much friction out there already between Linux & Windows. It is really a battle between open source & the proprietary ideologies. Bart Roozendaal in a comment above proves my point nicely. Forget the idea of innovation and whatever possibilities may come from a much more contemporary based Operating System, for such things are secondary. What he is asking essentially is, are you going to be on the side of profit or no? He gives his position away easily here. As you know, Windows is notorious for its monopolistic approach regarding new markets, software, and other technology. It has maintained a deathgrip on its hegemony since its existence and sadly the windows os is racked with endless bugs & backdoors.
Again, I applaud you for your taking a road less travelled and hopefully forgeing ahead and not becoming discouraged. Personally, I'd like to see another OS out there...one much more contemporary.