I have some dynamic light scattering data. The machine pumps out the autocorrelation function, and a count-rate.
I can do a simple fit to the ACF
ACF = exp(-D*q^2*t)
and obtain the diffusion coefficient.
I want to obtain the same D from the power spectrum. I have been able to create a power spectrum in two ways -- from the Fourier transform of the ACF, and from the count rate. Both agree, but the power spectrum does not look like in the one in the books, so I'm not sure how to use it to work out the line width.
Attached is an image from a PDF that shows what you should get, and what I get from MATLAB. Can anyone make sense of whats going on?
I have used the code of answer #3 on this question. The resulting autocorrelation comes out exactly the same as
the machine gives me and
using MATLAB's autocorr command on the photoncount data.
Thank you for your time.
When you compute the Fourier transform from short sequences of data it often looks very noisy. There are a number of reasons for this. One reason is that the statistics of individual Fourier components are not Gaussian, and so averaging the spectra across multiple samples of data will only slowly improve the quality of the estimate.
Another causes of "noisiness" in empirical spectra behavior is that you are applying (to a finite data sample) a transform which involves a pathological sinc function and which assumes an infinite length signal. To diminish this problem, it helps to apply a "windowing-function" to your data before computing the Fourier transform. One of the more complicated but also more powerful windowing approaches is the use of so-called 'Slepian tapers'.
MATLAB conveniently implements well-known windows in functions such as hamming and hann.
Related
I was using PCA for dimensionality reduction of MD (molecular dynamics) trajectory data of some protein simulations. Basically my data is xyz coordinates of protein atoms which change with time (that means I have lot of frames of this xyz coordinates). The dimension of this data is something like 20000 frames of 200x3 (atoms by coordinates). I implemented PCA using princomp command in Matlab.
I was wondering if I can do FFT on my data. I have experience of doing FFT on audio signals (1D signal). Here my data has both time and space in picture. It must be theoretically possible to implement FFT on my data and then filter it using a LPF (low pass filter). But I am unsure.
Can someone give me some direction/code snippets/references towards implementing FFT on my data?
Why people are preferring PCA more often compared to FFT and filtering. Is it because of computational efficiency of algorithm or is it because of the statistical nature of underlying data?
For the first question "Can someone give me some direction/code snippets/references towards implementing FFT on my data?":
I should say fft is implemented in matlab and you do not need to implement it by your own. Also, for your case you should use fftn (fft documentation)to transform and after applying lowpass filtering by dessignfilt (design filter in matalab), the apply ifftn (inverse fft in matlab)to inverse the transform.
For the second question "Why people are preferring PCA more often compared to FFT and filtering ...":
I should say as the filtering in fft is done in signal space, after filtering you can't generalize it in time space. You can more details about this drawback in this article.
But, Fourier analysis has also some other
serious drawbacks. One of them may be that time
information is lost in transforming to the frequency
domain. When looking at a Fourier transform of a
signal, it is impossible to tell when a particular event
has taken place. If it is a stationary signal - this
drawback isn't very important. However, most
interesting signals contain numerous non-stationary or
transitory characteristics: drift, trends, abrupt changes,
and beginnings and ends of events. These
characteristics are often the most important part of the
signal, and Fourier analysis is not suitable in detecting
them.
I have audio record.
I want to detect sinusoidal pattern.
If i do regular fft i have result with bad SNR.
for example
my signal contents 4 high frequencies:
fft result:
To reduce noise i want to do Coherent integration as described in this article: http://flylib.com/books/en/2.729.1.109/1/
but i cant find any MATLAB examples how to do it. Sorry for bad english. Please help )
I look at spectra almost every day, but I never heard of 'coherent integration' as a method to calculate one. As also mentioned by Jason, coherent integration would only work when your signal has a fixed phase during every FFT you average over.
It is more likely that you want to do what the article calls 'incoherent integration'. This is more commonly known as calculating a periodogram (or Welch's method, a slightly better variant), in which you average the squared absolute value of the individual FFTs to obtain a power-spectral-density. To calculate a PSD in the correct way, you need to pay attention to some details, like applying a suitable Fourier window before doing each FFT, doing the proper normalization (so that the result is properly calibrated in i.e. Volt^2/Hz) and using half-overlapping windows to make use of all your data. All of this is implemented in Matlab's pwelch function, which is part of the signal-processing toolbox. See my answer to a similar question about how to use pwelch.
Integration or averaging of FFT frames just amounts to adding the frames up element-wise and dividing by the number of frames. Since MATLAB provides vector operations, you can just add the frames with the + operator.
coh_avg = (frame1 + frame2 + ...) / Nframes
Where frameX are the complex FFT output frames.
If you want to do non-coherent averaging, you just need to take the magnitude of the complex elements before adding the frames together.
noncoh_avg = (abs(frame1) + abs(frame2) + ...) / Nframes
Also note that in order for coherent averaging to work the best, the starting phase of the signal of interest needs to be the same for each FFT frame. Otherwise, the FFT bin with the signal may add in such a way that the amplitudes cancel out. This is usually a tough requirement to ensure without some knowledge of the signal or some external triggering so it is more common to use non-coherent averaging.
Non-coherent integration will not reduce the noise power, but it will increase signal to noise ratio (how the signal power compares to the noise power), which is probably what you really want anyway.
I think what you are looking for is the "spectrogram" function in Matlab, which computes the short time Fourier transform(STFT) of an input signal.
STFT
Spectrogram
I am trying to resample/recreate already recorded data for plotting purposes. I thought this is best place to ask the question (besides dsp.se).
The data is sampled at high frequency, contains to much data points and not suitable for plotting in time domain (not enough memory). i want to sample it with minimal loss. The sampling interval of the resulting data doesn't need to be same (well it is again for plotting purposes, not analysis) although input data in equally sampled.
When we use the regular resample command from matlab/octave, it can distort stiff pieces of the curve.
What is the best approach here?
For reference I put two pictures found in tex.se)
First image is regular resample
Second image is a better resampled data that can well behave around peaks.
You should try this set of files from the File Exchange. It computes optimal lookup table based on either the maximum set of points or a given error. You can choose from natural, linear, or spline for the interpolation methods. Spline will have the smallest table size but is slower than linear. I don't use natural unless I have a really good reason.
Sincerely,
Jason
I was reading a report today which looked at measuring heat storage of a lake from temperature measurements where to reduce the the impacts of temperature fluctuations that can confound estimates of short-term changes in heat storage, a wavelet de-noising routine was used (daubechies 4 wavelet, single rescaling, min/max thresholds used on the wden function in the wavelet toolbox) where 2 levels of wavelet filtering was applied. This technique results in smoother temporal variations in water temperature, while preserving patterns of diurnal heat gain and loss.
From this description, consider that my temperature measurements are similar to
load sumsin;
s = sumsin;
plot(s);
How would I apply the techniques described using the wden functions in matlab.
Apologies for the vagueness of this post, but seeing as I am clueless on how to complete this task I would be very greatfull for some advice.
I assume you're talking about de-noising by thresholding the detail coefficients of the wavelet transform. wden does do this. You've not specified however whether it is hard or soft thresholding.
For not wanting to reproduce matlab's help here,
help wden
Will give you what you need on how to use the function. Given the information you've provided, and the assumption that soft thresholding is appropriate; (as it is with most methods except Donoho's Visushrink, referred to by wden as 'sqtwolog')
[s_denoised, ~, ~] = wden(s, 'minimaxi', 's', 'sln', 2, 'db4');
Should give you what you want. This does also assume you're not interested in the decomposed wavelet tree
For a homework assignment I have to design a simple bandpass filter in Matlab that filters out everything between 250Hz and 1000 Hz. What I did so far:
- using the 'enframe' function to create half overlapping windows with 512 samples each. On the windows I apply the hann window function.
- On each window I apply an fft. After this I reconstruct the original signal with the function ifft, that all goes well.
But the problem is how I have to interpret the result of the fft function and how to filter out a frequency band.
Unless I'm mistaken, it sounds like you're taking the wrong approach to this.
If your assignment is to manipulate a signal specifically by manipulating its FFT then ignore me. Otherwise.. read on.
The FFT is normally used to analyse a signal in the frequency domain. If you start fiddling with the complex coefficients that an FFT returns then you're getting into a complicated mathematical situation. This is particularly the case since your cut-off frequencies aren't going to lie nicely on FFT bin frequencies. Also, remember that the FFT is not a perfect transform of the signal you're analysing. It will always introduce artefacts of its own due to scalloping error, and convolution with your hann window.
So.. let's leave the FFT for analysis, and build a filter.
If you're doing band-pass design in your class I'm going to assume you understand what they do. There's a number of functions in Matlab to generate the coefficients for different types of filter i.e. butter, kaiser cheby1. Look up their help pages in Matlab for loads more info. The values you plug in to these functions will be dependent on your filter specification, i.e. you want "X"dB rolloff and "Y"dB passband ripple. You'll need some idea of the how these filters work, and knowledge of their transfer functions to understand how their filter order relates to your specification.
Once you have your coefficients, it's just a case of running them through the filter function (again.. check the help page if you're not sure how this works).
The mighty JOS has a great walkthrough of bandpass filter design here.
One other little niggle.. in your question you mentioned that you want your filter to "filter out" everything between 250Hz and 1000Hz. This is a bit ambiguous. If you're designing a bandpass filter you would want to "pass" everything between 250Hz and 1000Hz. If you do in fact want to "filter out" everything in this range you want a band-stop filter instead.
It all depends on the sampling rate you use.
If you sample right according to the Nyquist-Shannon sampling theorem then you can try and interpret the samples of your fft using the definition of the DFT.
For understanding which frequencies correspond with which samples in the dft results, I think it's best to look at the inverse transformation. You multiply coefficient k with
exp(i*2*pi*k/N*n)
which can be interpreted to be a cosine with Euler's Formula. So each coefficient gets multiplied by a sine of a certain frequency.
Good luck ;)