the Length of signal in calculating FFT - matlab

I want to ask some questions related to the last question of mine so I don't want to post in another thread. My question contains a code, I therefore can't post it as a comment. So I have to edit my old question into a new one. Please take a look and help. Thank you.
I'm new to FFT and DSP and I want to ask you some questions about calculating FFT in Matlab. The following code is from Matlab help, I just removed the noise.
Can I choose the length of signal L different from NFFT?
I'm not sure if I used window correctly. But when I use window (hanning in the following code), I can't get the exact values of amplitudes?
When L and NFFT get different values, then the values of amplitudes were different too. How can I get the exact value of amplitude of input signal? (in the following code, I used a already known signal to check if the code work correctly. But in case, I got the signal from a sensor and I dont know ahead its amplitude, how can I check?)
I thank you very much and look forward to hearing from you :)
Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 512; % Length of signal
NFFT=1024; % number of fft points
t = (0:L-1)*T; % Time vector
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); input signal
X = fft(hann(L).*x', NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2+1);
plot(f,2*abs(X(1:NFFT/2+1))) % Plot single-sided amplitude spectrum.

L is the number of samples in your input signal. If L < NFFT then the difference is zero-padded.
I would recommend you do some reading on the effect of zero-padding on FFTs. Typically it is best to use L = NFFT as this will give you the best representation of your data.
An excepted answer on the use of zero-padding and FFTs is given here:
https://dsp.stackexchange.com/questions/741/why-should-i-zero-pad-a-signal-before-taking-the-fourier-transform
In your experiment you are seeing different amplitudes because you will have different amount of spectral leakage with each different L.

You need to apply a window function prior to the FFT to get consistent results with frequency components that have non-integral number of periods within your sampling window.
You might also want to consider using periodogram instead of using the FFT directly - it takes care of window functions and a lot of the other housekeeping for you.

Related

Fourier Analysis - MATLAB

Good evening guys,
I wanna ask you a question regarding the analysis of a function in the domain of frequencies (Fourier). I have two vectors: one containing 7700 values for pressure, and the other one containing 7700 values (same number) for time.
For example, I call the firt vector "a" and the second one "b". With the command "figure(1),plot(a,b)" I obtain the curve in the domain of time.
How can I do to plot this curve in the domain of frequency, to make Fourier transform?
I've read about the function "fft", but I've not understood very well how it can be used...can anyone help me?
Thanks in advance for your attention!
fft returns spectrum as complex numbers. In order to analyze it you have to use its absolute value or phase. In general, it should look like this (let's assume that t is vector containing time and y is the one with actual signal, N is the number of samples):
fY = fft(y) / (N/2) % scale it to amplitude, typically by N/2
amp_fY = abs(fY)
phs_fY = angle(fY)
Additionally, it would be nice to have FFT with known frequency resolution. For that, you need sampling period/frequency. Let's call that frequency fs:
fs = 1/(t(1) - t(0))
and the vector of frequencies for FFT (F)
should be:
F = (0:fs/N:(N-1)*fs/N)
and finally plots:
plot(F, amp_fY)
% or plot(F, phs_fy) according to what you need
I you can use stem instead of plot to get some other type of chart.
Note that the DC component (the average value) will be doubled on the plot.
Hope it helps

how to use ifft function in MATLAB with experimental data

I am trying to use the ifft function in MATLAB on some experimental data, but I don't get the expected results.
I have frequency data of a logarithmic sine sweep excitation, therefore I know the amplitude [g's], the frequency [Hz] and the phase (which is 0 since the point is a piloting point).
I tried to feed it directly to the ifft function, but I get a complex number as a result (and I expected a real result since it is a time signal). I thought the problem could be that the signal is not symmetric, therefore I computed the symmetric part in this way (in a 'for' loop)
x(i) = conj(x(mod(N-i+1,N)+1))
and I added it at the end of the amplitude vector.
new_amp = [amplitude x];
In this way the new amplitude vector is symmetric, but now I also doubled the dimension of that vector and this means I have to double the dimension of the frequency vector also.
Anyway, I fed the new amplitude vector to the ifft but still I don't get the logarithmic sine sweep, although this time the output is real as expected.
To compute the time [s] for the plot I used the following formula:
t = 60*3.33*log10(f/f(1))/(sweep rate)
What am I doing wrong?
Thank you in advance
If you want to create identical time domain signal from specified frequency values you should take into account lots of details. It seems to me very complicated problem and I think it need very strength background on the mathematics behind it.
But I think you may work on some details to get more acceptable result:
1- Time vector should be equally spaced based on sampling from frequency steps and maximum.
t = 0:1/fs:N/fs;
where: *N* is the length of signal in frequency domain, and *fs* is twice the
highest frequency in frequency domain.
2- You should have some sort of logarithmic phases on the frequency bins I think.
3- Your signal in frequency domain must be even to have real signal in time domain.
I hope this could help, even for someone to improve it.

Time delay estimation using crosscorrelation

I have two sensors seperated by some distance which receive a signal from a source. The signal in its pure form is a sine wave at a frequency of 17kHz. I want to estimate the TDOA between the two sensors. I am using crosscorrelation and below is my code
x1; % signal as recieved by sensor1
x2; % signal as recieved by sensor2
len = length(x1);
nfft = 2^nextpow2(2*len-1);
X1 = fft(x1);
X2 = fft(x2);
X = X1.*conj(X2);
m = ifft(X);
r = [m(end-len+1) m(1:len)];
[a,i] = max(r);
td = i - length(r)/2;
I am filtering my signals x1 and x2 by removing all frequencies below 17kHz.
I am having two problems with the above code:
1. With the sensors and source at the same place, I am getting different values of 'td' at each time. I am not sure what is wrong. Is it because of the noise? If so can anyone please provide a solution? I have read many papers and went through other questions on stackoverflow so please answer with code along with theory instead of just stating the theory.
2. The value of 'td' is sometimes not matching with the delay as calculated using xcorr. What am i doing wrong? Below is my code for td using xcorr
[xc,lags] = xcorr(x1,x2);
[m,i] = max(xc);
td = lags(i);
One problem you might have is the fact that you only use a single frequency. At f = 17 kHz, and an estimated speed-of-sound v = 340 m/s (I assume you use ultra-sound), the wavelength is lambda = v / f = 2 cm. This means that your length measurement has an unambiguity range of 2 cm (sorry, cannot find a good link, google yourself). This means that you already need to know your distance to better than 2 cm, before you can use the result of your measurement to refine the distance.
Think of it in another way: when taking the cross-correlation between two perfect sines, the result should be a 'comb' of peaks with spacing equal to the wavelength. If they overlap perfectly, and you displace one signal by one wavelength, they still overlap perfectly. This means that you first have to know which of these peaks is the right one, otherwise a different peak can be the highest every time purely by random noise. Did you make a plot of the calculated cross-correlation before trying to blindly find the maximum?
This problem is the same as in interferometry, where it is easy to measure small distance variations with a resolution smaller than a wavelength by measuring phase differences, but you have no idea about the absolute distance, since you do not know the absolute phase.
The solution to this is actually easy: let your source generate more frequencies. Even using (band-limited) white-noise should work without problems when calculating cross-correlations, and it removes the ambiguity problem. You should see the white noise as a collection of sines. The cross-correlation of each of them will generate a comb, but with different spacing. When adding all those combs together, they will add up significantly only in a single point, at the delay you are looking for!
White Noise, Maximum Length Sequency or other non-periodic signals should be used as the test signal for time delay measurement using cross correleation. This is because non-periodic signals have only one cross correlation peak and there will be no ambiguity to determine the time delay. It is possible to use the burst type of periodic signals to do the job, but with degraded SNR. If you have to use a continuous periodic signal as the test signal, then you can only measure a time delay within one period of the periodic test signal. This should explain why, in your case, using lower frequency sine wave as the test signal works while using higher frequency sine wave does not. This is demonstrated in these videos: https://youtu.be/L6YJqhbsuFY, https://youtu.be/7u1nSD0RlwY .

Am I using the Fourier transformation the right way?

I am wondering if I am using Fourier Transformation in MATLAB the right way. I want to have all the average amplitudes for frequencies in a song. For testing purposes I am using a free mp3 download of Beethovens "For Elise" which I converted to a 8 kHz mono wave file using Audacity.
My MATLAB code is as follows:
clear all % be careful
% load file
% Für Elise Recording by Valentina Lisitsa
% from http://www.forelise.com/recordings/valentina_lisitsa
% Converted to 8 kHz mono using Audacity
allSamples = wavread('fur_elise_valentina_lisitsa_8khz_mono.wav');
% apply windowing function
w = hanning(length(allSamples));
allSamples = allSamples.*w;
% FFT needs input of length 2^x
NFFT = 2^nextpow2(length(allSamples))
% Apply FFT
fftBuckets=fft(allSamples, NFFT);
fftBuckets=fftBuckets(1:(NFFT/2+1)); % because of symetric/mirrored values
% calculate single side amplitude spectrum,
% normalize by dividing by NFFT to get the
% popular way of displaying amplitudes
% in a range of 0 to 1
fftBuckets = (2*abs(fftBuckets))/NFFT;
% plot it: max possible frequency is 4000, because sampling rate of input
% is 8000 Hz
x = linspace(1,4000,length(fftBuckets));
bar(x,fftBuckets);
The output then looks like this:
Can somebody please tell me if my code is correct? I am especially wondering about the peaks around 0.
For normalizing, do I have to divide by NFFT or length(allSamples)?
For me this doesn't really look like a bar chart, but I guess this is due to the many values I am plotting?
Thanks for any hints!
Depends on your definition of "correct". This is doing what you intended, I think, but it's probably not very useful. I would suggest using a 2D spectrogram instead, as you'll get time-localized information on frequency content.
There is no one correct way of normalising FFT output; there are various different conventions (see e.g. the discussion here). The comment in your code says that you want a range of 0 to 1; if your input values are in the range -1 to 1, then dividing by number of bins will achieve that.
Well, exactly!
I would also recommend plotting the y-axis on a logarithmic scale (in decibels), as that's roughly how the human ear interprets loudness.
Two things that jump out at me:
I'm not sure why you are including the DC (index = 1) component in your plot. Not a big deal, but of course that bin contains no frequency data
I think that dividing by length(allSamples) is more likely to be correct than dividing by NFFT. The reason is that if you want the DC component to be equal to the mean of the input data, dividing by length(allSamples) is the right thing to do.
However, like Oli said, you can't really say what the "correct" normalization is until you know exactly what you are trying to calculate. I tend to use FFTs to estimate power spectra, so I want units like "DAC / rt-Hz", which would lead to a different normalization than if you wanted something like "DAC / Hz".
Ultimately there's no substitute for thinking about exacty what you want to get out of the FFT (including units), and working out for yourself what the correct normalization should be (starting from the definition of the FFT if necessary).
You should also be aware that MATLAB's fft has no requirement to use an array length that is a power of 2 (though doing so will presumably lead to the FFT running faster). Because zero-padding will introduce some ringing, you need to think about whether it is the right thing to do for your application.
Finally, if a periodogram / power spectrum is really what you want, MATLAB provides functions like periodogram, pwelch and others that may be helpful.

matlab FFT. Stuck understanding relationship between frequency and result

We're trying to analyse flow around circular cylinder and we have a set of Cp values that we got from wind tunnel experiment. Initially, we started off with a sample frequency of 20 Hz and tried to find the frequency of vortex shedding using FFT in matlab. We got a frequency of around 7 Hz. Next, we did the same experiment, but the only thing we changed was the sampling frequency- from 20 Hz to 200 Hz. We got the frequency of the vortex shedding to be around 70 Hz (this is where the peak is located in the graph). The graph doesn't change regardless of the Cp data that we enter. The only time the peak differs is when we change the sample frequency. It seems like the increase in the frequency of vortex shedding is proportional to the sample frequency and this doesn't seem to make sense at all. Any help regarding establishing a relation between sample frequency and vortex shedding frequency would be greatly appreaciated.
The problem you are seeing is related to "data aliasing" due to limitations of the FFT being able to detect frequencies higher than the Nyquist Frequency (half-the sampling frequency).
With data aliasing, a peak in real frequency will be centered around (real frequency modulo Nyquist frequency). In your 20 Hz sampling (assuming 70 Hz is the true frequency, that results in zero frequency which means you're not seeing the real information. One thing that can help you with this is to use FFT "windowing".
Another problem that you may be experiencing is related to noisy data generation via single-FFT measurement. It's better to take lots of data, use windowing with overlap, and make sure you have at least 5 FFTs which you average to find your result. As Steven Lowe mentioned, you should also sample at faster rates if possible. I would recommend sampling at the fastest rate your instruments can sample.
Lastly, I would recommend that you read some excerpts from Numerical Recipes in C (<-- link):
Section 12.0 -- Introduction to FFT
Section 12.1 (Discusses data aliasing)
Section 13.4 (Discusses FFT windowing)
You don't need to read the C source code -- just the explanations. Numerical Recipes for C has excellent condensed information on the subject.
If you have any more questions, leave them in the comments. I'll try to do my best in answering them.
Good luck!
this is probably not a programming problem, it sounds like an experiment-measurement problem
i think the sampling frequency has to be at least twice the rate of the oscillation frequency, otherwise you get artifacts; this might explain the difference. Note that the ratio of the FFT frequency to the sampling frequency is 0.35 in both cases. Can you repeat the experiment with higher sampling rates? I'm thinking that if this is a narrow cylinder in a strong wind, it may be vibrating/oscillating faster than the sampling rate can detect..
i hope this helps - there's a 97.6% probability that i don't know what i'm talking about ;-)
If it's not an aliasing problem, it sounds like you could be plotting the frequency response on a normalised frequency scale, which will change with sample frequency. Here's an example of a reasonably good way to plot a frequency response of a signal in Matlab:
Fs = 100;
Tmax = 10;
time = 0:1/Fs:Tmax;
omega = 2*pi*10; % 10 Hz
signal = 10*sin(omega*time) + rand(1,Tmax*Fs+1);
Nfft = 2^8;
[Pxx,freq] = pwelch(signal,Nfft,[],[],Fs)
plot(freq,Pxx)
Note that the sample frequency must be explicitly passed to the pwelch command in order to output the “real” frequency data. Otherwise, when you change the sample frequency the bin where the resonance occurs will seem to shift, which is similar to the problem you describe.
Methinks you need to do some serious reading on digital signal processing before you can even begin to understand all the nuances of the DFT (FFT). If I was you, I'd get grounded in it first with this great book:
Discrete-Time Signal Processing
If you want more of a mathematical treatment that will really expand your abilities,
Fourier Analysis by Körner
Take a look at this related question. While it was originally asked about asked about VB the responses are generically about FFTs
I tried using the frequency response code as above but it seems that I dont have the appropriate toolbox in Matlab. Is there any way to do the same thing without using fft command? So far, this is what I have:
% FFT Algorithm
Fs = 200; % Sampling frequency
T = 1/Fs; % Sample time
L = 65536; % Length of signal
t = (0:L-1)*T; % Time vector
y = data1; % Your CP values go in this vector
NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2);
% Plot single-sided amplitude spectrum.
loglog(f,2*abs(Y(1:NFFT/2)))
title(' y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')
I think there might be something wrong with the code I am using. I'm not sure what though.
A colleague of mine has written some nice GPL-licenced functions for spectral analysis:
http://www.mecheng.adelaide.edu.au/~pvl/octave/
(Update: this code is now part of one of the Octave modules:
http://octave.svn.sourceforge.net/viewvc/octave/trunk/octave-forge/main/signal/inst/.
But it might be tricky to extract just the pieces you need from there.)
They're written for both Matlab and Octave and serve mostly as a drop-in replacement for the analogous functions in the Signal Processing Toolbox. (So the code above should still work fine.)
It may help with your data analysis; better than rolling your own with fft and the like.