Get string index into matrix - matlab

I have the following string in matlab
V= 'abcdefghijklmnñopqrstuvwxyz';
Then I have a word of 9 characters consisting of chars from my 'V' alphabet.
k = 'peligroso';
I want to create a square matrix (3x3) with the indices of my word 'k' according to my alphabet, this would be the output. (Note that the range I'm considering is 0 to 26, so 'a' char does have index 0)
16 4 11
8 6 18
15 19 15
My code for doing this is:
K = [findstr(V, k(1))-1 findstr(V, k(2))-1 findstr(V, k(3))-1;findstr(V, k(4))-1 findstr(V, k(5))-1 findstr(V, k(6))-1; findstr(V, k(7))-1 findstr(V, k(8))-1 findstr(V, k(9))-1];
But I think there must be a more elegant solution to achieve the same, any ideas?
PS: I'm not using ASCII values since char 'ñ' must be inside my alphabet

For a loop-free solution, you can use ISMEMBER, which works on strings as well as on numbers:
K = zeros(3); %# create 3x3 array of zeros
[~,K(:)] = ismember(k,V); %# fill in indices
K = K'-1; %# make K conform to expected output

Since strings are just arrays of characters, it is easy to manipulate them using the usual array-processing functions.
For example, we can use arrayfun to create a new array by applying the specified function, which produces an output array of the same size. Using reshape we can form the desired 3x3 shape. Note that we transpose at the end since MATLAB's reshape handles arrays in column-major order.
K = reshape(arrayfun(#(x) findstr(V, x)-1, k), 3,3)'
Alternatively, since MATLAB lets you index matrices using a single index, which reads the entries of the matrix in column major order, we can construct an empty matrix and build its entries up one-by-one.
K = zeros(3,3)
for i=1:9
K(i) = findstr(V, k(i))-1;
end
K = K'

I am fond of #Jonas' solution (ismember), I think it's the most elegant way to go here.
But, just to provide another solution:
V = 'abcdefghijklmnñopqrstuvwxyz';
k = 'peligroso';
K = reshape( bsxfun(#eq, (k-0).', V-0) * (1:numel(V)).', 3,3).'
(forgive the SO highlighting)
The advantage of this would be that this uses built-in functions exclusively (ismember is not built-in, at least, not on my Matlab R2010b). This means that this solution might be faster than ismember, but
You'll have to test whther that is actually true, and if true,
you should have cases complex and large enough to justify losing the readability of ismember
Note that indices in Matlab are 1-based, meaning that V(1) = a. The solution above produces a 1-based answer, while you provide a 0-based example. Just subtract 1 from the line above if you really need 0-based indices.

Related

Generating all ordered samples with replacement

I would like to generate an array which contains all ordered samples of length k taken from a set of n elements {a_1,...,a_n}, that is all the k-tuples (x_1,...,x_k) where each x_j can be any of the a_i (repetition of elements is allowed), and whose total number is n^k.
Is there a built-in function in Matlab to obtain it?
I have tried to write a code that iteratively uses the datasample function, but I couldn't get what desired so far.
An alternative way to get all the tuples is based on k-base integer representation.
If you take the k-base representation of all integers from 0 to n^k - 1, it gives you all possible set of k indexes, knowing that these indexes start at 0.
Now, implementing this idea is quite straightforward. You can use dec2base if k is lower than 10:
X = A(dec2base(0:(n^k-1), k)-'0'+1));
For k between 10 and 36, you can still use dec2base but you must take care of letters as there is a gap in ordinal codes between '9' and 'A':
X = A(dec2base(0:(n^k-1), k)-'0'+1));
X(X>=17) = X(X>=17)-7;
Above 36, you must use a custom made code for retrieving the representation of the integer, like this one. But IMO you may not need this as 2^36 is quite huge.
What you are looking for is ndgrid: it generates the grid elements in any dimension.
In the case k is fixed at the moment of coding, get all indexes of all elements a this way:
[X_1, ..., X_k] = ndgrid(1:n);
Then build the matrix X from vector A:
X = [A(X_1(:)), ..., A(X_k(:))];
If k is a parameter, my advice would be to look at the code of ndgrid and adapt it in a new function so that the output is a matrix of values instead of storing them in varargout.
What about this solution, I don't know if it's as fast as yours, but do you think is correct?
function Y = ordsampwithrep(X,K)
%ordsampwithrep Ordered samples with replacement
% Generates an array Y containing in its rows all ordered samples with
% replacement of length K with elements of vector X
X = X(:);
nX = length(X);
Y = zeros(nX^K,K);
Y(1,:) = datasample(X,K)';
k = 2;
while k < nX^K +1
temprow = datasample(X,K)';
%checknew = find (temprow == Y(1:k-1,:));
if not(ismember(temprow,Y(1:k-1,:),'rows'))
Y(k,:) = temprow;
k = k+1;
end
end
end

Extract values from a vector and sort them based on their original squence

I have a vector of numbers (temperatures), and I am using the MATLAB function mink to extract the 5 smallest numbers from the vector to form a new variable. However, the numbers extracted using mink are automatically ordered from lowest to largest (of those 5 numbers). Ideally, I would like to retain the sequence of the numbers as they are arranged in the original vector. I hope my problem is easy to understand. I appreciate any advice.
The function mink that you use was introduced in MATLAB 2017b. It has (as Andras Deak mentioned) two output arguments:
[B,I] = mink(A,k);
The second output argument are the indices, such that B == A(I).
To obtain the set B but sorted as they appear in A, simply sort the vector of indices I:
B = A(sort(I));
For example:
>> A = [5,7,3,1,9,4,6];
>> [~,I] = mink(A,3);
>> A(sort(I))
ans =
3 1 4
For older versions of MATLAB, it is possible to reproduce mink using sort:
function [B,I] = mink(A,k)
[B,I] = sort(A);
B = B(1:k);
I = I(1:k);
Note that, in the above, you don't need the B output, your ordered_mink can be written as follows
function B = ordered_mink(A,k)
[~,I] = sort(A);
B = A(sort(I(1:k)));
Note: This solution assumes A is a vector. For matrix A, see Andras' answer, which he wrote up at the same time as this one.
First you'll need the corresponding indices for the extracted values from mink using its two-output form:
[vals, inds] = mink(array);
Then you only need to order the items in val according to increasing indices in inds. There are multiple ways to do this, but they all revolve around sorting inds and using the corresponding order on vals. The simplest way is to put these vectors into a matrix and sort the rows:
sorted_rows = sortrows([inds, vals]); % sort on indices
and then just extract the corresponding column
reordered_vals = sorted_rows(:,2); % items now ordered as they appear in "array"
A less straightforward possibility for doing the sorting after the above call to mink is to take the sorting order of inds and use its inverse to reverse-sort vals:
reverse_inds = inds; % just allocation, really
reverse_inds(inds) = 1:numel(inds); % contruct reverse permutation
reordered_vals = vals(reverse_inds); % should be the same as previously

Vectorized processing of each N-dimension array in (N+1)-dimension array in Matlab? [duplicate]

You can apply a function to every item in a vector by saying, for example, v + 1, or you can use the function arrayfun. How can I do it for every row/column of a matrix without using a for loop?
Many built-in operations like sum and prod are already able to operate across rows or columns, so you may be able to refactor the function you are applying to take advantage of this.
If that's not a viable option, one way to do it is to collect the rows or columns into cells using mat2cell or num2cell, then use cellfun to operate on the resulting cell array.
As an example, let's say you want to sum the columns of a matrix M. You can do this simply using sum:
M = magic(10); %# A 10-by-10 matrix
columnSums = sum(M, 1); %# A 1-by-10 vector of sums for each column
And here is how you would do this using the more complicated num2cell/cellfun option:
M = magic(10); %# A 10-by-10 matrix
C = num2cell(M, 1); %# Collect the columns into cells
columnSums = cellfun(#sum, C); %# A 1-by-10 vector of sums for each cell
You may want the more obscure Matlab function bsxfun. From the Matlab documentation, bsxfun "applies the element-by-element binary operation specified by the function handle fun to arrays A and B, with singleton expansion enabled."
#gnovice stated above that sum and other basic functions already operate on the first non-singleton dimension (i.e., rows if there's more than one row, columns if there's only one row, or higher dimensions if the lower dimensions all have size==1). However, bsxfun works for any function, including (and especially) user-defined functions.
For example, let's say you have a matrix A and a row vector B. E.g., let's say:
A = [1 2 3;
4 5 6;
7 8 9]
B = [0 1 2]
You want a function power_by_col which returns in a vector C all the elements in A to the power of the corresponding column of B.
From the above example, C is a 3x3 matrix:
C = [1^0 2^1 3^2;
4^0 5^1 6^2;
7^0 8^1 9^2]
i.e.,
C = [1 2 9;
1 5 36;
1 8 81]
You could do this the brute force way using repmat:
C = A.^repmat(B, size(A, 1), 1)
Or you could do this the classy way using bsxfun, which internally takes care of the repmat step:
C = bsxfun(#(x,y) x.^y, A, B)
So bsxfun saves you some steps (you don't need to explicitly calculate the dimensions of A). However, in some informal tests of mine, it turns out that repmat is roughly twice as fast if the function to be applied (like my power function, above) is simple. So you'll need to choose whether you want simplicity or speed.
I can't comment on how efficient this is, but here's a solution:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :))
applyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1))'
% Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #sum;
applyToRows(myFunc, myMx)
Building on Alex's answer, here is a more generic function:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :));
newApplyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1), 'UniformOutput', false)';
takeAll = #(x) reshape([x{:}], size(x{1},2), size(x,1))';
genericApplyToRows = #(func, matrix) takeAll(newApplyToRows(func, matrix));
Here is a comparison between the two functions:
>> % Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #(x) [mean(x), std(x), sum(x), length(x)];
>> genericApplyToRows(myFunc, myMx)
ans =
2 1 6 3
5 1 15 3
8 1 24 3
>> applyToRows(myFunc, myMx)
??? Error using ==> arrayfun
Non-scalar in Uniform output, at index 1, output 1.
Set 'UniformOutput' to false.
Error in ==> #(func,matrix)arrayfun(applyToGivenRow(func,matrix),1:size(matrix,1))'
For completeness/interest I'd like to add that matlab does have a function that allows you to operate on data per-row rather than per-element. It is called rowfun (http://www.mathworks.se/help/matlab/ref/rowfun.html), but the only "problem" is that it operates on tables (http://www.mathworks.se/help/matlab/ref/table.html) rather than matrices.
Adding to the evolving nature of the answer to this question, starting with r2016b, MATLAB will implicitly expand singleton dimensions, removing the need for bsxfun in many cases.
From the r2016b release notes:
Implicit Expansion: Apply element-wise operations and functions to arrays with automatic expansion of dimensions of length 1
Implicit expansion is a generalization of scalar expansion. With
scalar expansion, a scalar expands to be the same size as another
array to facilitate element-wise operations. With implicit expansion,
the element-wise operators and functions listed here can implicitly
expand their inputs to be the same size, as long as the arrays have
compatible sizes. Two arrays have compatible sizes if, for every
dimension, the dimension sizes of the inputs are either the same or
one of them is 1. See Compatible Array Sizes for Basic Operations and
Array vs. Matrix Operations for more information.
Element-wise arithmetic operators — +, -, .*, .^, ./, .\
Relational operators — <, <=, >, >=, ==, ~=
Logical operators — &, |, xor
Bit-wise functions — bitand, bitor, bitxor
Elementary math functions — max, min, mod, rem, hypot, atan2, atan2d
For example, you can calculate the mean of each column in a matrix A,
and then subtract the vector of mean values from each column with A -
mean(A).
Previously, this functionality was available via the bsxfun function.
It is now recommended that you replace most uses of bsxfun with direct
calls to the functions and operators that support implicit expansion.
Compared to using bsxfun, implicit expansion offers faster speed,
better memory usage, and improved readability of code.
None of the above answers worked "out of the box" for me, however, the following function, obtained by copying the ideas of the other answers works:
apply_func_2_cols = #(f,M) cell2mat(cellfun(f,num2cell(M,1), 'UniformOutput',0));
It takes a function f and applies it to every column of the matrix M.
So for example:
f = #(v) [0 1;1 0]*v + [0 0.1]';
apply_func_2_cols(f,[0 0 1 1;0 1 0 1])
ans =
0.00000 1.00000 0.00000 1.00000
0.10000 0.10000 1.10000 1.10000
With recent versions of Matlab, you can use the Table data structure to your advantage. There's even a 'rowfun' operation but I found it easier just to do this:
a = magic(6);
incrementRow = cell2mat(cellfun(#(x) x+1,table2cell(table(a)),'UniformOutput',0))
or here's an older one I had that doesn't require tables, for older Matlab versions.
dataBinner = cell2mat(arrayfun(#(x) Binner(a(x,:),2)',1:size(a,1),'UniformOutput',0)')
The accepted answer seems to be to convert to cells first and then use cellfun to operate over all of the cells. I do not know the specific application, but in general I would think using bsxfun to operate over the matrix would be more efficient. Basically bsxfun applies an operation element-by-element across two arrays. So if you wanted to multiply each item in an n x 1 vector by each item in an m x 1 vector to get an n x m array, you could use:
vec1 = [ stuff ]; % n x 1 vector
vec2 = [ stuff ]; % m x 1 vector
result = bsxfun('times', vec1.', vec2);
This will give you matrix called result wherein the (i, j) entry will be the ith element of vec1 multiplied by the jth element of vec2.
You can use bsxfun for all sorts of built-in functions, and you can declare your own. The documentation has a list of many built-in functions, but basically you can name any function that accepts two arrays (vector or matrix) as arguments and get it to work.
I like splitapply, which allows a function to be applied to the columns of A using splitapply(fun,A,1:size(A,2)).
For example
A = magic(5);
B = splitapply(#(x) x+1, A, 1:size(A,2));
C = splitapply(#std, A, 1:size(A,2));
To apply the function to the rows, you could use
splitapply(fun, A', 1:size(A,1))';
(My source for this solution is here.)
Stumbled upon this question/answer while seeking how to compute the row sums of a matrix.
I would just like to add that Matlab's SUM function actually has support for summing for a given dimension, i.e a standard matrix with two dimensions.
So to calculate the column sums do:
colsum = sum(M) % or sum(M, 1)
and for the row sums, simply do
rowsum = sum(M, 2)
My bet is that this is faster than both programming a for loop and converting to cells :)
All this can be found in the matlab help for SUM.
if you know the length of your rows you can make something like this:
a=rand(9,3);
b=rand(9,3);
arrayfun(#(x1,x2,y1,y2,z1,z2) line([x1,x2],[y1,y2],[z1,z2]) , a(:,1),b(:,1),a(:,2),b(:,2),a(:,3),b(:,3) )

MATLAB function that gives all the positive integers in a column vector

I need to create a function that has the input argument n, a integer , n>1 , and an output argument v, which is a column vector of length n containing all the positive integers smaller than or equal to n, arranged in such a way that no element of the vector equals its own index.
I know how to define the function
This is what I tried so far but it doesn't work
function[v]=int_col(n)
[1,n] = size(n);
k=1:n;
v=n(1:n);
v=k'
end
Let's take a look at what you have:
[1,n] = size(n);
This line doesn't make a lot of sense: n is an integer, which means that size(n) will give you [1,1], you don't need that. (Also an expression like [1,n] can't be on the left hand side of an assignment.) Drop that line. It's useless.
k=1:n;
That line is pretty good, k is now a row vector of size n containing the integers from 1 to n.
v=n(1:n);
Doesn't make sense. n isn't a vector (or you can say it's a 1x1 vector) either way, indexing into it (that's what the parentheses do) doesn't make sense. Drop that line too.
v=k'
That's also a nice line. It makes a column vector v out of your row vector k. The only thing that this doesn't satisfy is the "arranged in such a way that no element of the vector equals its own index" part, since right now every element equals its own index. So now you need to find a way to either shift those elements or shuffle them around in some way that satisfies this condition and you'd be done.
Let's give a working solution. You should really look into it and see how this thing works. It's important to solve the problem in smaller steps and to know what the code is doing.
function [v] = int_col(n)
if n <= 1
error('argument must be >1')
end
v = 1:n; % generate a row-vector of 1 to n
v = v'; % make it a column vector
v = circshift(v,1); % shift all elements by 1
end
This is the result:
>> int_col(5)
ans =
5
1
2
3
4
Instead of using circshift you can do the following as well:
v = [v(end);v(1:end-1)];

How can I apply a function to every row/column of a matrix in MATLAB?

You can apply a function to every item in a vector by saying, for example, v + 1, or you can use the function arrayfun. How can I do it for every row/column of a matrix without using a for loop?
Many built-in operations like sum and prod are already able to operate across rows or columns, so you may be able to refactor the function you are applying to take advantage of this.
If that's not a viable option, one way to do it is to collect the rows or columns into cells using mat2cell or num2cell, then use cellfun to operate on the resulting cell array.
As an example, let's say you want to sum the columns of a matrix M. You can do this simply using sum:
M = magic(10); %# A 10-by-10 matrix
columnSums = sum(M, 1); %# A 1-by-10 vector of sums for each column
And here is how you would do this using the more complicated num2cell/cellfun option:
M = magic(10); %# A 10-by-10 matrix
C = num2cell(M, 1); %# Collect the columns into cells
columnSums = cellfun(#sum, C); %# A 1-by-10 vector of sums for each cell
You may want the more obscure Matlab function bsxfun. From the Matlab documentation, bsxfun "applies the element-by-element binary operation specified by the function handle fun to arrays A and B, with singleton expansion enabled."
#gnovice stated above that sum and other basic functions already operate on the first non-singleton dimension (i.e., rows if there's more than one row, columns if there's only one row, or higher dimensions if the lower dimensions all have size==1). However, bsxfun works for any function, including (and especially) user-defined functions.
For example, let's say you have a matrix A and a row vector B. E.g., let's say:
A = [1 2 3;
4 5 6;
7 8 9]
B = [0 1 2]
You want a function power_by_col which returns in a vector C all the elements in A to the power of the corresponding column of B.
From the above example, C is a 3x3 matrix:
C = [1^0 2^1 3^2;
4^0 5^1 6^2;
7^0 8^1 9^2]
i.e.,
C = [1 2 9;
1 5 36;
1 8 81]
You could do this the brute force way using repmat:
C = A.^repmat(B, size(A, 1), 1)
Or you could do this the classy way using bsxfun, which internally takes care of the repmat step:
C = bsxfun(#(x,y) x.^y, A, B)
So bsxfun saves you some steps (you don't need to explicitly calculate the dimensions of A). However, in some informal tests of mine, it turns out that repmat is roughly twice as fast if the function to be applied (like my power function, above) is simple. So you'll need to choose whether you want simplicity or speed.
I can't comment on how efficient this is, but here's a solution:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :))
applyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1))'
% Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #sum;
applyToRows(myFunc, myMx)
Building on Alex's answer, here is a more generic function:
applyToGivenRow = #(func, matrix) #(row) func(matrix(row, :));
newApplyToRows = #(func, matrix) arrayfun(applyToGivenRow(func, matrix), 1:size(matrix,1), 'UniformOutput', false)';
takeAll = #(x) reshape([x{:}], size(x{1},2), size(x,1))';
genericApplyToRows = #(func, matrix) takeAll(newApplyToRows(func, matrix));
Here is a comparison between the two functions:
>> % Example
myMx = [1 2 3; 4 5 6; 7 8 9];
myFunc = #(x) [mean(x), std(x), sum(x), length(x)];
>> genericApplyToRows(myFunc, myMx)
ans =
2 1 6 3
5 1 15 3
8 1 24 3
>> applyToRows(myFunc, myMx)
??? Error using ==> arrayfun
Non-scalar in Uniform output, at index 1, output 1.
Set 'UniformOutput' to false.
Error in ==> #(func,matrix)arrayfun(applyToGivenRow(func,matrix),1:size(matrix,1))'
For completeness/interest I'd like to add that matlab does have a function that allows you to operate on data per-row rather than per-element. It is called rowfun (http://www.mathworks.se/help/matlab/ref/rowfun.html), but the only "problem" is that it operates on tables (http://www.mathworks.se/help/matlab/ref/table.html) rather than matrices.
Adding to the evolving nature of the answer to this question, starting with r2016b, MATLAB will implicitly expand singleton dimensions, removing the need for bsxfun in many cases.
From the r2016b release notes:
Implicit Expansion: Apply element-wise operations and functions to arrays with automatic expansion of dimensions of length 1
Implicit expansion is a generalization of scalar expansion. With
scalar expansion, a scalar expands to be the same size as another
array to facilitate element-wise operations. With implicit expansion,
the element-wise operators and functions listed here can implicitly
expand their inputs to be the same size, as long as the arrays have
compatible sizes. Two arrays have compatible sizes if, for every
dimension, the dimension sizes of the inputs are either the same or
one of them is 1. See Compatible Array Sizes for Basic Operations and
Array vs. Matrix Operations for more information.
Element-wise arithmetic operators — +, -, .*, .^, ./, .\
Relational operators — <, <=, >, >=, ==, ~=
Logical operators — &, |, xor
Bit-wise functions — bitand, bitor, bitxor
Elementary math functions — max, min, mod, rem, hypot, atan2, atan2d
For example, you can calculate the mean of each column in a matrix A,
and then subtract the vector of mean values from each column with A -
mean(A).
Previously, this functionality was available via the bsxfun function.
It is now recommended that you replace most uses of bsxfun with direct
calls to the functions and operators that support implicit expansion.
Compared to using bsxfun, implicit expansion offers faster speed,
better memory usage, and improved readability of code.
None of the above answers worked "out of the box" for me, however, the following function, obtained by copying the ideas of the other answers works:
apply_func_2_cols = #(f,M) cell2mat(cellfun(f,num2cell(M,1), 'UniformOutput',0));
It takes a function f and applies it to every column of the matrix M.
So for example:
f = #(v) [0 1;1 0]*v + [0 0.1]';
apply_func_2_cols(f,[0 0 1 1;0 1 0 1])
ans =
0.00000 1.00000 0.00000 1.00000
0.10000 0.10000 1.10000 1.10000
With recent versions of Matlab, you can use the Table data structure to your advantage. There's even a 'rowfun' operation but I found it easier just to do this:
a = magic(6);
incrementRow = cell2mat(cellfun(#(x) x+1,table2cell(table(a)),'UniformOutput',0))
or here's an older one I had that doesn't require tables, for older Matlab versions.
dataBinner = cell2mat(arrayfun(#(x) Binner(a(x,:),2)',1:size(a,1),'UniformOutput',0)')
The accepted answer seems to be to convert to cells first and then use cellfun to operate over all of the cells. I do not know the specific application, but in general I would think using bsxfun to operate over the matrix would be more efficient. Basically bsxfun applies an operation element-by-element across two arrays. So if you wanted to multiply each item in an n x 1 vector by each item in an m x 1 vector to get an n x m array, you could use:
vec1 = [ stuff ]; % n x 1 vector
vec2 = [ stuff ]; % m x 1 vector
result = bsxfun('times', vec1.', vec2);
This will give you matrix called result wherein the (i, j) entry will be the ith element of vec1 multiplied by the jth element of vec2.
You can use bsxfun for all sorts of built-in functions, and you can declare your own. The documentation has a list of many built-in functions, but basically you can name any function that accepts two arrays (vector or matrix) as arguments and get it to work.
I like splitapply, which allows a function to be applied to the columns of A using splitapply(fun,A,1:size(A,2)).
For example
A = magic(5);
B = splitapply(#(x) x+1, A, 1:size(A,2));
C = splitapply(#std, A, 1:size(A,2));
To apply the function to the rows, you could use
splitapply(fun, A', 1:size(A,1))';
(My source for this solution is here.)
Stumbled upon this question/answer while seeking how to compute the row sums of a matrix.
I would just like to add that Matlab's SUM function actually has support for summing for a given dimension, i.e a standard matrix with two dimensions.
So to calculate the column sums do:
colsum = sum(M) % or sum(M, 1)
and for the row sums, simply do
rowsum = sum(M, 2)
My bet is that this is faster than both programming a for loop and converting to cells :)
All this can be found in the matlab help for SUM.
if you know the length of your rows you can make something like this:
a=rand(9,3);
b=rand(9,3);
arrayfun(#(x1,x2,y1,y2,z1,z2) line([x1,x2],[y1,y2],[z1,z2]) , a(:,1),b(:,1),a(:,2),b(:,2),a(:,3),b(:,3) )