A elementary Lisp procedure error - lisp

(define (sum-two-sqrt a b c)
(cond ((and (<= c a) (<= c b)) sqrt-sum(a b))
((and (<= a b) (<= a c)) sqrt-sum(b c))
((and (<= b a) (<= b c)) sqrt-sum(a c))
)
)
(define (sqrt-sum x y)
(+ (* x x) (*y y))
)
(define (<= x y)
(not (> x y))
(sum-two-sqrt 3 4 5)
This is my code
Please help me to fix the problem. :)
I just start studing Lisp today.
learned some C before but the two language is QUITE DIFFERENT!
This is the question
Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two larger numbers.
If you have better algorithm
POST IT!
Thank you :)

There's no need to define <=, it's a primitive operation. After fixing a couple of typos:
sqrt-sum: you were incorrectly invoking the procedure; the opening parenthesis must be written before the procedure name, not after.
sqrt-sum: (*y y) is incorrect, you surely meant (* y y); the space(s) after an operator matter.
This should work:
(define (sqrt-sum x y)
(+ (* x x) (* y y)))
(define (sum-two-sqrt a b c)
(cond ((and (<= c a) (<= c b)) (sqrt-sum a b))
((and (<= a b) (<= a c)) (sqrt-sum b c))
((and (<= b a) (<= b c)) (sqrt-sum a c))))
Or another alternative:
(define (sum-two-sqrt a b c)
(let ((m (min a b c)))
(cond ((= a m) (sqrt-sum b c))
((= b m) (sqrt-sum a c))
(else (sqrt-sum a b)))))

Following up on a suggestion by #J.Spiral and seconded by #River, the following Racket code reads nicely to me:
#lang racket
(define (squares-of-larger l)
(define two-larger (remove (apply min l) l))
(for/sum ([i two-larger]) (* i i)))
(squares-of-larger '(3 1 4)) ;; should be 25
Please note that this solution is entirely functional, since "remove" just returns a new list.
Also note that this isn't even in the same neighborhood with HtDP; I just wanted to express this concisely, and show off for/sum.

I didn't have Scheme interpreter here, but below seems to be shorter then other suggestions :) So it's in CL, but should look very similar in Scheme.
(defun sum-two-sqrt (a b c)
(let ((a (max a b))
(b (max (min a b) c)))
(+ (* a a) (* b b))))
In Scheme this would translate to:
(define (sum-two-sqrt a b c)
(let ((a (max a b))
(b (max (min a b) c)))
(+ (* a a) (* b b))))

the algorithm seems to work, just turn
*y
to
* y
whitespace is important here, else you're telling the interpreter you want to usethe function *y
add a close paren after
(define (<= x y) (not (> x y))
sqrt-sum(a b)
turns to
(sqrt-sum a b)
and ditto for the other sqrt-sum calls
edit: also a possibility:
(define (square a) (* a a))
(define (square-sum a b c)
(- (+ (square a)
(square b)
(square c))
(square (min a b c))))

Related

A list with their position via for loop in racket

(define ( addposition x )
(cond
[(empty? x) "empty list"]
[#t (for/list ([i x])
(list i (add1 (index-of x i))))]
))
(addposition (list 'a 'b 'c ))
it returns me '((a 1) (b 2) (c 3)), but I need the list like '(a 1 b 2 c 3)
As a bare minimum to get what you want you can throw that nested list to a (flatten) call:
> (flatten '((a 1) (b 2) (c 3)))
'(a 1 b 2 c 3)
But overall the idea to build mini lists with index-of and then flattening it is not the most performant. Nor will it be correct if your list contains duplicate values.
If we keep our own record of the next index, and using recursion instead of the otherwise handy for/list structure, we can build our list this way:
(define (add-positions xs [ind 0])
(if (null? xs)
xs
(append (list (first xs) ind)
(add-positions (rest xs) (add1 ind))
)))
(add-positions '(a b c d))
;=> '(a 0 b 1 c 2 d 3)
This can be expressed pretty naturally using map and flatten:
;;; Using map and flatten:
(define (list-pos xs (start 0))
(flatten (map (lambda (x y) (list x y))
xs
(range start (+ start (length xs))))))
Here map creates a list of lists, each containing one value from the input list and one value from a range list starting from start, and flatten flattens the result.
This seems more natural to me than the equivalent using for/list, but tastes may differ:
;;; Using for/list:
(define (list-pos xs (start 0))
(flatten (for/list ((x xs)
(p (range start (+ start (length xs)))))
(list x p))))
There are a lot of ways that you could write this, but I would avoid using append in loops. This is an expensive function, and calling append repeatedly in a loop is just creating unnecessary overhead. You could do this:
;;; Using Racket default arguments and add1:
(define (list-pos xs (pos 0))
(if (null? xs)
xs
(cons (car xs)
(cons pos (list-pos (cdr xs) (add1 pos))))))
Here the first element of the list and a position counter are added onto the front of the result with every recursive call. This isn't tail recursive, so you might want to add an accumulator:
;;; Tail-recursive version using inner define:
(define (list-pos xs (start 0))
(define (loop xs pos acc)
(if (null? xs)
(reverse acc)
(loop (cdr xs)
(add1 pos)
(cons pos
(cons (car xs) acc)))))
(loop xs start '()))
Because the intermediate results are collected in an accumulator, reverse is needed to get the final result in the right order.
You could (and I would) replace the inner define with a named let. Named let should work in Racket or Scheme; here is a Scheme version. Note that Scheme does not have default arguments, so an optional argument is used for start:
;;; Tail-recursive Scheme version using named let:
(define (list-pos xs . start)
(let loop ((xs xs)
(pos (if (null? start) 0 (car start)))
(acc '()))
(if (null? xs)
(reverse acc)
(loop (cdr xs)
(add1 pos)
(cons pos
(cons (car xs) acc))))))
All of the above versions have the same behavior:
list-pos.rkt> (list-pos '(a b c))
'(a 0 b 1 c 2)
list-pos.rkt> (list-pos '(a b c) 1)
'(a 1 b 2 c 3)
Here is a simple solution using for/fold
(define (addposition l)
(for/fold ([accum empty]) ([elem l])
(append accum elem)))
I love the for loops in Racket 😌
Note: As pointed out by ad absurdum, append is expensive here. So we can simply reverse first and then use cons to accumulate
(define (addposition l)
(for/fold ([accum empty]) ([elem (reverse l)])
(cons (first elem) (cons (second elem) accum))))
As others have pointed out, you can start by making a list of lists. Let's use a list comprehension:
> (for/list ([x '(a b c)]
[pos (in-naturals 1)])
(list x pos))
'((a 1) (b 2) (c 3))
Here, we iterate in parallel over two sets of data:
The list '(a b c)
The stream (in-naturals 1), which produces 1, 2, 3, ....
We combine them into lists with list, giving this structure:
'((a 1) (b 2) (c 3))
This is called "zipping", and using list comprehensions is a convenient way to do it in Racket.
Next, we want to flatten our list, so it ends up looking like this:
'(a 1 b 2 c 3)
However, you shouldn't use flatten for this, as it flattens not just the outermost list, but any sub-lists as well. Imagine if we had data like this, with a nested list in the middle:
> (flatten
(for/list ([x '(a (b c d) e)]
[pos (in-naturals 1)])
(list x pos)))
'(a 1 b c d 2 e 3)
The nested list structure got clobbered! We don't want that. Unless we have a good reason, we should preserve the internal structure of each element in the list we're given. We'll do this by using append* instead, which flattens only the outermost list:
> (append*
(for/list ([x '(a (b c d) e)]
[pos (in-naturals 1)])
(list x pos)))
'(a 1 (b c d) 2 e 3)
Now that we've got it working, let's put it into a function:
> (define (addposition xs)
(append*
(for/list ([x xs]
[pos (in-naturals 1)])
(list x pos))))
> (addposition '(a b c))
'(a 1 b 2 c 3)
> (addposition '(a (b c d) e))
'(a 1 (b c d) 2 e 3)
Looks good!

DrRacket: expected a function after the open parenthesis

It compiles right but if i try to use the function I get an error:
function call: expected a function after the open parenthesis, but received 1.
(define (euclid a b)
(if (= b 0) a
(if (= a 0) b
(if (> a b) (euclid(- a b) b)
(euclid (a (- b a) ))))))
There's a misplaced bracket in the last line. This should fix it:
(define (euclid a b)
(if (= b 0)
a
(if (= a 0)
b
(if (> a b)
(euclid (- a b) b)
(euclid a (- b a))))))
When you have several nested conditions, it's better to use cond, like this:
(define (euclid a b)
(cond ((= b 0) a)
((= a 0) b)
((> a b) (euclid (- a b) b))
(else (euclid a (- b a)))))

Implement every, some in Lisp [duplicate]

I want a predicate as a parameter of a function.
(DEFUN per (F L)
(cond ((F L) 'working)
(T 'anything)))
(per 'numberp 3)
as result it raises an error:
Undefined operator F in form (F L).
As explained in Technical Issues of Separation in Function Cells and Value Cells,
Common Lisp is a Lisp-2, i.e., you
need funcall:
(defun per (F L)
(if (funcall F L)
'working
'other))
(per #'numberp 3)
==> WORKING
(per #'numberp "3")
==> OTHER
See also apply.
Late to the party, but here's another example:
(defun strip-predicate (p list)
(cond ((endp list) nil)
((funcall p (first list)) (strip-predicate (rest list)))
( T (cons (first list) (strip-Predicate p (rest list))))))
This could be used on predicates such as atom or numberp:
(strip-predicate 'numberp '(a 1 b 2 c 3 d))
(a b c d)
or:
(strip-predicate 'atom '(a (a b) b c d))
((a b))

Racket - Transform a natural number to a specific base [duplicate]

I want to show the result of my function as a list not as a number.
My result is:
(define lst (list ))
(define (num->base n b)
(if (zero? n)
(append lst (list 0))
(append lst (list (+ (* 10 (num->base (quotient n b) b)) (modulo n b))))))
The next error appears:
expected: number?
given: '(0)
argument position: 2nd
other arguments...:
10
I think you have to rethink this problem. Appending results to a global variable is definitely not the way to go, let's try a different approach via tail recursion:
(define (num->base n b)
(let loop ((n n) (acc '()))
(if (< n b)
(cons n acc)
(loop (quotient n b)
(cons (modulo n b) acc)))))
It works as expected:
(num->base 12345 10)
=> '(1 2 3 4 5)

How would I express this Scheme function more clearly?

(define (repeated f n)
if (= n 0)
f
((compose repeated f) (lambda (x) (- n 1))))
I wrote this function, but how would I express this more clearly, using simple recursion with repeated?
I'm sorry, I forgot to define my compose function.
(define (compose f g) (lambda (x) (f (g x))))
And the function takes as inputs a procedure that computes f and a positive integer n and returns the procedure that computes the nth repeated application of f.
I'm assuming that (repeated f 3) should return a function g(x)=f(f(f(x))). If that's not what you want, please clarify. Anyways, that definition of repeated can be written as follows:
(define (repeated f n)
(lambda (x)
(if (= n 0)
x
((repeated f (- n 1)) (f x)))))
(define (square x)
(* x x))
(define y (repeated square 3))
(y 2) ; returns 256, which is (square (square (square 2)))
(define (repeated f n)
(lambda (x)
(let recur ((x x) (n n))
(if (= n 0)
args
(recur (f x) (sub1 n))))))
Write the function the way you normally would, except that the arguments are passed in two stages. It might be even clearer to define repeated this way:
(define repeated (lambda (f n) (lambda (x)
(define (recur x n)
(if (= n 0)
x
(recur (f x) (sub1 n))))
(recur x n))))
You don't have to use a 'let-loop' this way, and the lambdas make it obvious that you expect your arguments in two stages.
(Note:recur is not built in to Scheme as it is in Clojure, I just like the name)
> (define foonly (repeat sub1 10))
> (foonly 11)
1
> (foonly 9)
-1
The cool functional feature you want here is currying, not composition. Here's the Haskell with implicit currying:
repeated _ 0 x = x
repeated f n x = repeated f (pred n) (f x)
I hope this isn't a homework problem.
What is your function trying to do, just out of curiosity? Is it to run f, n times? If so, you can do this.
(define (repeated f n)
(for-each (lambda (i) (f)) (iota n)))