Add Body to IMethod - eclipse

I'm writing an Eclipse Plugin to do some simple code generation. I'm able to grab an IMethod representing the Method I need to modify, but I'm unsure how to actually write additional code in its body. I know this can be done with AST nodes, so is there a way to convert betwen IMethod and MethodDeclaration or something like that?

IMethod is a class of JDT's Java model while MethodDeclaration is a node class of the JDT AST. The Java model has no connection to the AST. But you can use the model to create an AST, typically ICompilationUnit (represents a Java source file) is used, although creating an AST from a string is also possible.
I would suggest checking out this article
Edit:
Possibly "no direct connection" would have been the better wording. In the JDT FAQ is the following:
How to go from one of IBinding, IJavaElement, ASTNode to another?
[...]
From an IJavaElement to an IBinding
If you only need the binding key and not the binding object itself, look for a 'getKey()' method in a subtype of IJavaElement. This method returns the binding key, which can be useful in many situations e.g. see next point. Note that not all subtypes of IJavaElement have a corresponding binding, e.g. IType and IMethod have one but IPackageFragment and IImportContainer do not.
If you really need the binding objects you can use 'org.eclipse.jdt.core.dom.ASTParser.createBindings(IJavaElement[], IProgressMonitor)'. Note that this operation is slightly expensive, compared to just getting the binding key, as the bindings have to be created.
From an IJavaElement to its declaring ASTNode
org.eclipse.jdt.core.dom.CompilationUnit.findDeclaringNode(String) - The string parameter is the binding key, see previous point.

Related

How to get an OrderedSet of OccurrenceSpecifications from a Lifeline in QVTo?

From the diagram on page 570 of the UML spec I concluded that a Lifeline should have the events property, holding an OrderedSet(OcurrenceSpecification). Unfortunately it is not there, at least in the QVTo implementation that I use.
All I have is the coveredBy property, serving me with an (unordered) Set(InteractionFragment). Since my transformation relies on the correct order of MessageOcurrenceSpecification I somehow need to implement myself what I expected to be implemented by the missing events property.
This is what I have so far:
helper Lifeline::getEvents (): OrderedSet(OccurrenceSpecification) {
return self.coveredBy->selectByKind(OccurrenceSpecification)->sortedBy(true);
}
Obviously sortedBy(true) does not get me far, but I don't know any further. Who can help?
All I could find so far were other people struggling with the same issue years ago, but no solution:
https://www.eclipse.org/forums/index.php/m/1049555/
https://www.eclipse.org/forums/index.php/m/1050025/
https://www.eclipse.org/forums/index.php/m/1095764/
Based on the answer by Vincent combined with input from a colleague of mine I came up with the following solution for QVTo:
-- -----------------------------------------------------------------------------
-- Polyfill for the missing Lifeline::events property
query Lifeline::getEvents (): OrderedSet(OccurrenceSpecification) {
return self.interaction.fragment
->selectByKind(OccurrenceSpecification)
->select(os: OccurrenceSpecification | os.covered->includes(self))
->asOrderedSet();
}
I don't know if it is possible, using directly coveredBy to get an ordered collection. As coveredBy is unordered, if you access it directly by the feature, you will have an unpredictible order and if you try to access it using the eGet(...) stuff, the same result will occur.
However, if I understood correctly, there is a "trick" that could work.
It relies on the assumption that each OccurrenceSpecification instance you need is held by the same Interaction that contains the Lifeline and uses the way EMF stores contained elements. Actually, each contained element is always kind of 'ordered' relatively to its parent (and for each collection so EMF can find elements back when XMI references are expressed using the element position in collections). So, the idea would be to access all the elements contained by the Interaction that owns the lifeline and filter the ones that are contained in coveredBy.
Expression with Acceleo
This is easy to write in MTL/Acceleo. In know you don't use it, but it illustrates what the expression does:
# In Acceleo:
# 'self' is the lifeline instance
self.interaction.eAllContents(OccurrenceSpecification)->select(e | self.coveredBy->includes(e))->asOrderedSet()
with self.interaction we retrieve the Interaction, then we get all the contained elements with eAllContents(...) and we filter the ones that are in the self.coveredBy collection.
But it is way less intuitive in QVT as eAllContents(...) does not exist. Instead you have to gain access to eContents() which is defined on EObject and returns an EList which is transtyped to a Sequence (in QVT,eAllContents() returns a ETreeIterator which is not transtyped by the QVT engine).
So, how to gain access to eContents() in the helper? There is two solutions:
Solution 1: Using the emf.tools library
The emf.tools library give you the ability to use asEObject() which casts your object in a pure EObject and give you more methods to access to (as eClass() for example...etc).
import emf.tools; -- we import the EMF tools library
modeltype UML ...; -- all your metamodel imports and stuffs
...
helper Lifeline::getEvents (): OrderedSet(OccurrenceSpecification) {
return self.interaction.asEObject().eContents()[OccurrenceSpecification]->select(e | self.coveredBy->includes(e))->asOrderedSet();
}
Solution 2: Using oclAstype(...)
If for some reason emf.tools cannot be accessed, you can still cast to an EObject using oclAsType(...).
modeltype UML ...; -- all your metamodel imports and stuffs
modeltype ECORE "strict" uses ecore('http://www.eclipse.org/emf/2002/Ecore'); -- you also register the Ecore metamodel
...
helper Lifeline::getEvents (): OrderedSet(OccurrenceSpecification) {
return self.interaction.oclAsType(EObject).eContents()[OccurrenceSpecification]->select(e | self.coveredBy->includes(e))->asOrderedSet();
}
Limitation
Ok, let's be honest here, this solution seems to work on the quick tests I performed, but I'm not a 100% sure that you will have all the elements you want as this code relies on the strong assumption that every OccurrenceSpecification you need are in the same Interaction as the Liteline instance. If you are sure that all the coveredBy elements you need are in the Interaction (I think they should be), then, that's not the sexiest solution, but it should do the work.
EDIT>
The solution proposed by hielsnoppe is more eleguant than the one I presented here and should be prefered.
You are correct. The Lifeline::events property is clearly shown on the diagram and appears in derived models such as UML.merged.uml.
Unfortunately Eclipse QVTo uses the Ecore projection of the UML metamodel to UML.ecore where unnavigable opposites are pruned. (A recent UML2Ecore enhancement allows the name to be persisted as an EAnnotation.) However once the true property name "events" has been pruned the implicit property name "OccurrenceSpecification" should work.
All associations are navigable in both directions in OCL, so this loss is a bug. (The new Pivot-based Eclipse OCL goes back to the primary UML model in order to avoid UML2Ecore losses. Once Eclipse QVTo migrates to the Pivot OCL you should see the behavior you expected.)

Xtext: Arithmetic example: What uses the calculator class and how?

Ive been looking at the Arithmetics example that comes with xtext and I stumbled upon the Calculator.java class under the org.eclipse.xtext.example.arithmetics.interpreter package but I cannot find any reference to it.
I understand that this class is used to walk the AST and evaluate the expressions but who is calling it and how is it registered?
I have a similar example which I am setting up from scratch and using the arithmetics as an example, however I dont know how to register the AST walker so that each time a tree is visited the particular method is triggered as in the Calculator class.
If you right-click the Calculator class (either directly within the Java Editor or in the Package Explorer) and select References -> Workspace you will get listed all occurrences of the Calculator type. You'll see that it is used in the ArthimeticsValidator and InterpreterAutoEdit types, where the latter is responsible for actually evaluating an expression within its evaluate method. From the InterpreterAutoEdit class, you can work your way up and see that it is registered via the ArthimeticsUiModule.

How to create a scala class based on user input?

I have a use case where I need to create a class based on user input.
For example, the user input could be : "(Int,fieldname1) : (String,fieldname2) : .. etc"
Then a class has to be created as follows at runtime
Class Some
{
Int fieldname1
String fieldname2
..so..on..
}
Is this something that Scala supports? Any help is really appreciated.
Your scenario doesn't seem to make sense. It's not so much an issue of runtime instantiation (the JVM can certainly do this with reflection). Really, what you're asking is to dynamically generate a class, which is only useful if your code makes use of it later on. But how can your code make use of it later on if you don't know what it looks like? For example, how would your later code know which fields it could reference?
No, not really.
The idea of a class is to define a type that can be checked at compile time. You see, creating it at runtime would somewhat contradict that.
You might want to store the user input in a different way, e.g. a map.
What are you trying to achieve by creating a class at runtime?
I think this makes sense, as long as you are using your "data model" in a generic manner.
Will this approach work here? Depends.
If your data coming from a file that is read at runtime but available at compile time, then you're in luck and type-safety will be maintained. In fact, you will have two options.
Split your project into two:
In the first run, read the file and write the new source
programmatically (as Strings, or better, with Treehugger).
In the second run, compile your generated class with the rest of your project and use it normally.
If #1 is too "manual", then use Macro Annotations. The idea here is that the main sub-project's compile time follows the macro sub-project's runtime. Therefore, if we provide the main sub-project with an "empty" class, members can be added to it dynamically at compile time using data that the macro sees at runtime. - To get started, Modify the macro to read from a file in this example
Else, if you're data are truly only knowable at runtime, then #Rob Starling's suggestion may work for you as it did me. I'll share my attempt if you want to be a guinea pig. For debugging, I've got an App.scala in there that shows how to pass strings to a runtime class generator and access it at runtime with Java reflection, even define a Scala type alias with it. So the question is, will your new dynamic class serve as a type-parameter in Slick, or fail to, as it sometimes does with other libraries?

How to internationalize java source code?

EDIT: I completely re-wrote the question since it seems like I was not clear enough in my first two versions. Thanks for the suggestions so far.
I would like to internationalize the source code for a tutorial project (please notice, not the runtime application). Here is an example (in Java):
/** A comment */
public String doSomething() {
System.out.println("Something was done successfully");
}
in English , and then have the French version be something like:
/** Un commentaire */
public String faitQuelqueChose() {
System.out.println("Quelque chose a été fait avec succès.");
}
and so on. And then have something like a properties file somewhere to edit these translations with usual tools, such as:
com.foo.class.comment1=A comment
com.foo.class.method1=doSomething
com.foo.class.string1=Something was done successfully
and for other languages:
com.foo.class.comment1=Un commentaire
com.foo.class.method1=faitQuelqueChose
com.foo.class.string1=Quelque chose a été fait avec succès.
I am trying to find the easiest, most efficient and unobtrusive way to do this with the least amount of manual grunt work (other than obviously translating the actual text). Preferably working under Eclipse. For example, the original code would be written in English, then externalized (to properties, preferably leaving the original source untouched), translated (humanly) and then re-generated (as a separate source file / project).
Some trails I have found (other than what AlexS suggested):
AntLR, a language parser / generator. There seems to be a supporting Eclipse plugin
Using Eclipse's AST (Abstract Syntax Tree) and I guess building some kind of plugin.
I am just surprised there isn't a tool out there that does this already.
I'd use unique strings as methodnames (or anything you want to be replaced by localized versions.
public String m37hod_1() {
System.out.println(m355a6e_1);
}
then I'd define a propertyfile for each language like this:
m37hod_1=doSomething
m355a6e_1="Something was done successfully"
And then I'd write a small program parsing the sourcefiles and replacing the strings. So everything just outside eclipse.
Or I'd use the ant task Replace and propertyfiles as well, instead of a standalone translation program.
Something like that:
<replace
file="${src}/*.*"
value="defaultvalue"
propertyFile="${language}.properties">
<replacefilter
token="m37hod_1"
property="m37hod_1"/>
<replacefilter
token="m355a6e_1"
property="m355a6e_1"/>
</replace>
Using one of these methods you won't have to explain anything about localization in your tutorials (except you want to), but can concentrate on your real topic.
What you want is a massive code change engine.
ANTLR won't do the trick; ASTs are necessary but not sufficient. See my essay on Life After Parsing. Eclipse's "AST" may be better, if the Eclipse package provides some support for name and type resolution; otherwise you'll never be able to figure out how to replace each "doSomething" (might be overloaded or local), unless you are willing to replace them all identically (and you likely can't do that, because some symbols refer to Java library elements).
Our DMS Software Reengineering Toolkit could be used to accomplish your task. DMS can parse Java to ASTs (including comment capture), traverse the ASTs in arbitrary ways, analyze/change ASTs, and the export modified ASTs as valid source code (including the comments).
Basically you want to enumerate all comments, strings, and declarations of identifiers, export them to an external "database" to be mapped (manually? by Google Translate?) to an equivalent. In each case you want to note not only the item of interest, but its precise location (source file, line, even column) because items that are spelled identically in the original text may need different spellings in the modified text.
Enumeration of strings is pretty easy if you have the AST; simply crawl the tree and look for tree nodes containing string literals. (ANTLR and Eclipse can surely do this, too).
Enumeration of comments is also straightforward if the parser you have captures comments. DMS does. I'm not quite sure if ANTLR's Java grammar does, or the Eclipse AST engine; I suspect they are both capable.
Enumeration of declarations (classes, methods, fields, locals) is relatively straightforward; there's rather more cases to worry about (e.g., anonymous classes containing extensions to base classes). You can code a procedure to walk the AST and match the tree structures, but here's the place that DMS starts to make a difference: you can write surface-syntax patterns that look like the source code you want to match. For instance:
pattern local_for_loop_index(i: IDENTIFIER, t: type, e: expression, e2: expression, e3:expression): for_loop_header
= "for (\t \i = \e,\e2,\e3)"
will match declarations of local for loop variables, and return subtrees for the IDENTIFIER, the type, and the various expressions; you'd want to capture just the identifier (and its location, easily done by taking if from the source position information that DMS stamps on every tree node). You'd probably need 10-20 such patterns to cover the cases of all the different kinds of identifiers.
Capture step completed, something needs to translate all the captured entities to your target language. I'll leave that to you; what's left is to put the translated entities back.
The key to this is the precise source location. A line number isn't good enough in practice; you may have several translated entities in the same line, in the worst case, some with different scopes (imagine nested for loops for example). The replacement process for comments, strings and the declarations are straightforward; rescan the tree for nodes that match any of the identified locations, and replace the entity found there with its translation. (You can do this with DMS and ANTLR. I think Eclipse ADT requires you generate a "patch" but I guess that would work.).
The fun part comes in replacing the identifier uses. For this, you need to know two things:
for any use of an identifier, what is the declaration is uses; if you know this, you can replace it with the new name for the declaration; DMS provides full name and type resolution as well as a usage list, making this pretty easy, and
Do renamed identifiers shadow one another in scopes differently than the originals? This is harder to do in general. However, for the Java language, we have a "shadowing" check, so you can at least decide after renaming that you have an issues. (There's even a renaming procedure that can be used to resolve such shadowing conflicts
After patching the trees, you simply rewrite the patched tree back out as a source file using DMS's built-in prettyprinter. I think Eclipse AST can write out its tree plus patches. I'm not sure ANTLR provides any facilities for regenerating source code from ASTs, although somebody may have coded one for the Java grammar. This is harder to do than it sounds, because of all the picky detail. YMMV.
Given your goal, I'm a little surprised that you don't want a sourcefile "foo.java" containing "class foo { ... }" to get renamed to .java. This would require not only writing the transformed tree to the translated file name (pretty easy) but perhaps even reconstructing the directory tree (DMS provides facilities for doing directory construction and file copies, too).
If you want to do this for many languages, you'd need to run the process once per language. If you wanted to do this just for strings (the classic internationalization case), you'd replace each string (that needs changing, not all of them do) by a call on a resource access with a unique resource id; a runtime table would hold the various strings.
One approach would be to finish the code in one language, then translate to others.
You could use Eclipse to help you.
Copy the finished code to language-specific projects.
Then:
Identifiers: In the Outline view (Window>Show View>Outline), select each item and Refactor>Rename (Alt+Shift+R). This takes care of renaming the identifier wherever it's used.
Comments: Use Search>File to find all instances of "/*" or "//". Click on each and modify.
Strings:
Use Source>Externalize strings to find all of the literal strings.
Search>File for "Messages.getString()".
Click on each result and modify.
On each file, ''Edit>Find/Replace'', replacing "//\$NON-NLS-.*\$" with empty string.
for the printed/logged string, java possess some internatization functionnalities, aka ResourceBundle. There is a tutorial about this on oracle site
Eclipse also possess a funtionnality for this ("Externalize String", as i recall).
for the function name, i don't think there anything out, since this will require you to maintain the code source on many version...
regards
Use .properties file, like:
Locale locale = new Locale(language, country);
ResourceBundle captions= ResourceBundle.getBundle("Messages",locale);
This way, Java picks the Messages.properties file according to the current local (which is acquired from the operating system or Java locale settings)
The file should be on the classpath, called Messages.properties (the default one), or Messages_de.properties for German, etc.
See this for a complete tutorial:
http://docs.oracle.com/javase/tutorial/i18n/intro/steps.html
As far as the source code goes, I'd strongly recommend staying with English. Method names like getUnternehmen() are worse to the average developer then plain English ones.
If you need to familiarize foreign developers to your code, write a proper developer documentation in their language.
If you'd like to have Javadoc in both English and other languages, see this SO thread.
You could write your code using freemarker templates (or another templating language such as velocity).
doSomething.tml
/** ${lang['doSomething.comment']} */
public String ${lang['doSomething.methodName']}() {
System.out.println("${lang['doSomething.message']}");
}
lang_en.prop
doSomething.comment=A comment
doSomething.methodName=doSomething
doSomething.message=Something was done successfully
And then merge the template with each language prop file during your build (using Ant / Gradle / Maven etc.)

Generate all setXXX calls of a POJO in Eclipse?

Im currently doing a lot of testing with JPA entities, where i have to keep calling the setter methods on the entity that looks something like this :
myEntity.setXXX(value);
myEntity.setYYY(value);
myEntity.setZZZ(value);
Is there any magic shortcut or menu in eclipse IDE to generate all the setter-method-calls that starts with "set", like those displayed in the ctrl-space (auto completion) popup (i think the inherited methods from Object are not being shown at popup) ?
So im imagining something like :
i type myEntity.set
and myEntity.set* are generated right away
Im a lazy programmer and currently using Eclipse Helios IDE.
Thank you !
Edit
Im not looking for source -> generate getter and setter, because that would helps me in generating the methods itself. Generating the method calls is what i want to achieve.
I have found the answer (I was always searching for this thing)...
The easiest way is to expand the class members in the "Package Explorer", sort them by name, multi-select all the setters, and then you have in the clipboard all the method names...
;-)
I like #Oscar's answer. It does lead to some cleanup though.
When I paste from the clipboard, I get something that looks like this:
setOne(int)
setTwo(String)
In order to clean this up, I first add semicolons with this search/replace regexp:
search = (.)$
replace = \1;
Then I add the getter calls (assuming incoming data object is named "data"):
search = s(et.*)\(.*
replace = s\1(data.g\1());
This doesn't handle multiple arguments in a method call...
you can use the outline at right side. There you can sort alphabetically or by declaration order using the toolbar button of the view.
and then you can filter out non required this.
From here also you can copy..all setter functions or getters functions names...
There is eclipse plugin to do that. The name of the plugin is **
FastCode
**. There are so many templates. Among those there is template to generate code for create object of the class and all setters method.
Source --> Generate Getters and Setters...
You can also get at it via the Quick Fix command (Ctrl+1) when the cursor is on a property.
EDIT
If you are simply looking for a faster way to copy properties from one object to another I suggest that you look at using reflection. I think this path would be much easier long term then generating the same-looking code over-and-over.
Commons BeanUtils can take away some of the pain in writing pure reflection code. For example, copyProperties takes a destination bean and either another bean or a Map as the source.