How to evaluate a hash generating algorithm - hash

What ways do you know to evaluate the efficiency of a hash function besides generating a large set of values and see the distribution of values?
By efficiency I mean that the keys generated by your hash function distribute evenly. Is there a way to prove this without actually testing for actual values?

A hash function is only even in the context of the data being hashed
Consider two data sets:
Set 1
1, 3, 6, 2, 7, 9, 5, 8, 4
Set 2
65355, 96424664, 86463624, 133, 643564, 24232, 88677, 865747, 2224
A good hashing function for one set (ie mod 10 for set 1) gives no collisions and could be seen as the perfect hash for that data set
However apply it to the second set and there are collisions everywhere
Hash = (x * 37) mod 256
Is much better for the second set but may not suit the first set quite so well... Especially when partitioning the hash for eg a small number of buckets.
What you can do is evaluate a hash against random data that you "expect" your function to have to handle... But that is making assumptions...
Premature optimisation is looking for the perfect hash function before you have enough real data to base your assessment on.
You should get enough data well before the cost of rehashing becomes prohibitive to change your hash function
Update
Lets suppose we are looking for a hash function that generates an 8 bit hash of the input data. Lets further suppose that the hash function is supposed to take byte-streams of varying length.
If we assume that the bytes in the byte-streams are uniformly distributed, we can make some assessment of different hash functions.
int hash = 0;
for (byte b in datastream) hash = hash xor b;
This function will produce uniformly distributed hash values for the specified data set, and would therefore be a good hash function in this context. If you don't see why this is, then you might have other problems.
int hash = 37;
for (byte b in datastream hash = (31 * hash + b) mod 256;
This function will produce uniformly distributed hash values for the specified data set, and would therefore be a good hash function in this context.
Now lets change the data set from being variable length strings of random numbers in the range 0 to 255 to being variable length strings comprising English sentences encoded as US-ASCII.
The XOR is then a poor hash because the input data never has the 8th bit set and as a result only generates hashes in the range 0-127, also there is a higher likelyhood of some "hot" values because of the letter frequency in english words and the cancelling affect of the XOR.
The pair of primes remains reasonably good as a hash function because it uses the full output range and the prime initial offset coupled with a different prime multiplier tends to spread the values out. But it is still weak for collisions due to how English language is structured... Something that only testing with real data can show.

Related

how can I create a hash function in which different permutaions of digits of an integer form the same key?

for example 20986 and 96208 should generate the same key (but not 09862 or 9862 as leading zero means it not even a 5 digit number so we igore those).
One option is to get the least/max sorted permutation and then the sorted number is the hashkey, but sorting is too costly for my case. I need to generate key in O(1) time.
Other idea I have is to traverse the number and get frequency of each digits and the then get a hash function out of it. Now whats the best function to combine the frequencies given that 0<= Summation(f[i]) <= no_of_digits.
To create an order-insensitive hash simply hash each value (in your case the digits of the number) and then combine them using a commutative function (e.g. addition/multiplication/XOR). XOR is probably the most appropriate as it retains a constant hash output size and is very fast.
Also, you will want to strip away any leading 0's before hashing the number.

how to "explain" the following hash function is bad

we have a hash table with size 16, using double hashing method.
h1(x) = k mod 16
h2(x) = 2*(k mod 8)
I know that h2 hash function is bad, probably because mod 8 and times 2, but I don't know how to explain it. is there any explanation like "h2 hash function should mod prime or it will cause ____ problem "
It is bad because it increases the number of collisions.
The (mod 8) means that you are only looking for 8 pigeonholes in your 16-pigeonhole table.
Multiplying it by 2 just spreads those 8 pigeonholes out so that you don’t have to search too many slots past the hashed index to find an empty hole...
You should always compute modulo the size of your table.
h(x) ::= x (mod N) // where N is the table size
The purpose of making the table size a prime number just has to do with how powers of two are very common in computer science. If your data is random, then the size of the table doesn’t matter.
— As long as it is big enough for your expected load factor. A 16-element table is very small. You shouldn’t expect to store more than 6-12 random values in your table without a high-probability of collisions.
A very good linked thread is What is a good Hash Function?, which is totally worth a read just for the links to further reading alone.

values for MAD compression method?

I am stuck trying to implement the perfect hashing technique using universal hashing at each level from Cormen. Specifically, with the compression method (at least, I think here is my problem).
I am working on strings, I think short strings (between 8 and 150), and for that, I have my set of hash functions with Murmur3/2, xxhash, FNV1, Cityhash and Spookyhash, using the 64-bits keys (for those hash functions like spookyhash I am getting the lower 64-bits), the problem is that there exist collissions with only three unique strings (two of 10 characters and one of 11 characters) in 9 buckets.
I am using the Cormen's hash compression method for that:
h_ab(k) = ((ak+b)mod p) mod m
with a = 3, p = 4294967291 (largest 32-bit prime), b = 5 and m = 9 (because m_j should be the square of n_j). As "k" I am using the hash value returned by the hash function (like murmur).
If for example, I am using a hash function like murmur2 (64-bit version), the p number should be the largest 64-prime number? I that way, I am covering all possibles hashes that murmur could return, is that right?
Which other hash compressions techniques (apart of division) exist and do you recommend?
Any reference, hint, book, paper, help is pretty welcome.
Sorry for the silly question, I am pretty newbie with hash functions and hash tables.
Thanks in advance.

Generating k pairwise independent hash functions

I'm trying to implement a Count-Min Sketch algorithm in Scala, and so I need to generate k pairwise independent hash functions.
This is a lower-level than anything I've ever programmed before, and I don't know much about hash functions except from Algorithms classes, so my question is: how do I generate these k pairwise independent hash functions?
Am I supposed to use a hash function like MD5 or MurmurHash? Do I just generate k hash functions of the form f(x) = ax + b (mod p), where p is a prime and a and b are random integers? (i.e., the universal hashing family everyone learns in algorithms 101)
I'm looking more for simplicity than raw speed (e.g., I'll take something 5x slower if it's simpler to implement).
Scala already has MurmurHash implemented (it's scala.util.MurmurHash). It's very fast and very good at distributing values. A cryptographic hash is overkill--you'll just take tens or hundreds of times longer than you need to. Just pick k different seeds to start with and, since it's nearly cryptographic in quality, you'll get k largely independent hash codes. (In 2.10, you should probably switch to using scala.util.hashing.MurmurHash3; the usage is rather different but you can still do the same thing with mixing.)
If you only need near values to be mapped to randomly far values this will work; if you want to avoid collisions (i.e. if A and B collide using hash 1 they will probably not also collide using hash 2), then you'll need to go at least one more step and hash not the whole object but subcomponents of it so there's an opportunity for the hashes to start out different.
Probably the simplest approach is to take some cryptographic hash function and "seed" it with different sequences of bytes. For most practical purposes, the results should be independent, as this is one of the key properties a cryptographic hash function should have (if you replace any part of a message, the hash should be completely different).
I'd do something like:
// for each 0 <= i < k generate a sequence of random numbers
val randomSeeds: Array[Array[Byte]] = ... ; // initialize by random sequences
def hash(i: Int, value: Array[Byte]): Array[Byte] = {
val dg = java.security.MessageDigest.getInstance("SHA-1");
// "seed" the digest by a random value based on the index
dg.update(randomSeeds(i));
return dg.digest(value);
// if you need integer hash values, just take 4 bytes
// of the result and convert them to an int
}
Edit:
I don't know the precise requirements of the Count-Min Sketch, maybe a simple has function would suffice, but it doesn't seem to be the simplest solution.
I suggested a cryptographic hash function, because there you have quite strong guarantees that the resulting hash functions will be very different, and it's easy to implement, just use the standard libraries.
On the other hand, if you have two hash functions of the form f1(x) = ax + b (mod p) and f2(x) = cx + d (mod p), then you can compute one using another (without knowing x) using a simple linear formula f2(x) = c / a * (f1(x) - b) + d (mod p), which suggests that they aren't very independent. So you could run into unexpected problems here.

Pearson perfect hashing

I'm trying to write a generator that produces Pearson perfect hashes. Note that I don't need a minimal perfect hash. Wikipedia says that a Pearson perfect hash can be found in O(|S|) time using a randomized algorithm (where S is the set of keys). However, I haven't been able to find such an algorithm online. Is this even possible?
Note: I don't want to use gperf/cmph/etc., I'd rather write my own implementation.
Pearson's original paper outlines an algorithm to construct a permutation table T for perfect hashing:
The table T at the heart of this new hashing function can sometimes be modified to produce a minimal, perfect hashing function over a modest list of words. In fact, one can usually choose the exact value of the function for a particular word. For example, Knuth [3] illustrates perfect hashing with an algorithm that maps a list of 31 common English words onto unique integers between −10 and 30. The table T presented in Table II maps these same 31 words onto the integers from 1 to 31 in alphabetic order.
Although the procedure for constructing the table in Table II is too involved to be detailed here, the following highlights will enable the interested reader to repeat the process:
A table T was constructed by pseudorandom permutation of the integers (0 ... 255).
One by one, the desired values were assigned to the words in the list. Each assignment was effected by exchanging two elements in the table.
For each word, the first candidate considered for exchange was T[h[n − 1] ⊕ C[n]], the last table element referenced in the computation of the hash function for that word.
A table element could not be exchanged if it was referenced during the hashing of a previously assigned word or if it was referenced earlier in the hashing of the same word.
If the necessary exchange was forbidden by Rule 4, attention was shifted to the previously referenced table element, T[h[n − 2] ⊕ C[n − 1]].
The procedure is not always successful. For example, using the ASCII character codes, if the word “a” hashes to 0 and the word “i” hashes to 15, it turns out that the word “in” must hash to 0. Initial attempts to map Knuth's 31 words onto the integers (0 ... 30) failed for exactly this reason. The shift to the range (1 ... 31) was an ad hoc tactic to circumvent this problem.
Does this tampering with T damage the statistical behavior of the hashing function? Not seriously. When the 26,662 dictionary entries are hashed into 256 bins, the resulting distribution is still not significantly different from uniform (χ² = 266.03, 255 d.f., p = 0.30). Hashing the 128 randomly selected dictionary words resulted in an average of 27.5 collisions versus 26.8 with the unmodified T. When this function is extended as described above to produce 16-bit hash indices, the same test produces a substantially greater number of collisions (4,870 versus 4,721 with the unmodified T), although the distribution still is not significantly different from uniform (χ² = 565.2, 532 d.f., p = 0.154).