I'm using ARC.
Sometimes I wrote the following code to assert a object should be deallocated:
__weak weakVariableOrProperty = someObject;
....
someObject = nil;
// or someObject = anotherObject;
....
if (weakVariableOrProperty) {
#throw [NSException exceptionWithName:NSInternalInconsistencyException reason:#"Object not deallocated" userInfo:nil];
}
For example, I use this code to check if a view controller is deallocated before creating a new view controller.
I believe that weak variable or weak property is set to nil immediately after last strong variable or property was set to nil or another object.
And this code is working as I expected until now.
Using weak variable or property to check if object is deallocated is a technique commonly used?
Is it possible that this code will cause problem in the future?
I believe that weak variable or weak property is set to nil immediately after last strong variable or property was set to nil or another object.
This is not exactly true, because an object could be autoreleased. In this case, the last strong reference may be gone, but the reference count of the instance would remain positive. In cases like that, the __weak reference would not be nil-ed out until the autorelease process takes place.
Is using weak variable or property to check if object is deallocated a technique commonly used?
I seriously doubt that this technique has gained much popularity, because ARC is a relatively new thing to Objective C. However, the technique appears valid.
Is it possible that this code will cause problem in the future?
This is very hard to guess, because the ARC Specification does not make any specific guarantees about the timing of nil-ing out the references, and because the spec allows compilers to optimize sequences of retain and release messages that they send to ARC objects.
Your explanation code will be prone to a race condition.
The object in weakVariableOrProperty could be released (since it's only referenced by a weak reference) after the if condition has been evaluated. To avoid this, introduce an ordinary variable, set it to weakVariableOrProperty and check it for nil instead.
That said, as #dasblinkenlight says, betting on exactly when an object will be gone is tough. In a reference-counted system you don't know what else is holding onto it. It may go away just after you've checked. You should be able to constrain your environment enough that you know the system's not squirreling things away, but both autorelease and weak references complicate things.
The best way to solve this is simply to have well-defined object lifetimes: view controllers that don't live forever, that you explicitly tell to go away and so on.
So I've tried using this technique to ensure that objects are always deallocated on a background thread. The [dealloc] for some of my classes was moderately heavy weight and could take a long time (10s of ms) which would freeze the main thread ever so slightly.
I decided to add all of these heavy objects to an array before they'd be released on the main thread, and then go through that array later on a backgroundd thread to remove them from the array. The thought was that the array would keep the retainCount alive until it could be removed from the array on the background thread, and then i could guarantee the cost of the [dealloc] wouldn't happen on the main thread.
To do this, i had the code below:
while([objectsToDealloc count] && /* other conditions to prevent infinite loop */){
__weak id ref = [objectsToDealloc lastObject];
[objectsToDealloc removeLastObject];
#synchronized(ref){
// synchronising on ref will retain it if possible.
// so if its still around,that means we didn't dealloc it
// like we were asked to.
// so insert it back into our array. once the object is deallocd
// it won't be able to be synchronized, because the weak ref will
// be nil
if(ref){
[objectsToDealloc insertObject:ref atIndex:0];
}
}
}
The idea was that if the array didn't contain the last reference (or if there were pending autoreleases on the object, etc), then the weak ref wouldn't nil out. I'd then #synchronize on the object - the synchronized block will retain + release whatever object is being synchronized - which would ensure the ref would stay alive during that block. if it was nil, then it'd been dealloced. if it wasn't nil, then i should add it back to the array and check back again later.
After testing with this code over the past few weeks, I cannot recommend this strategy to check for deallocated objects. I haven't tracked down exactly why yet, but very rarely the object will dealloc but the ref won't be nil yet, so i'll be adding an invalid object back into the array.
i've only caught this in the debugger one time, though i have crash logs of it happening a few times. You can see below that "nil" ends up in my array, even though the code above should protect against it.
Again, I suggest not using this technique for detecting when/if objects deallocate, and instead focus efforts on clarifying your object graph and relationships.
Related
Update
To clarify, the access of the object during its deinitialization is not being done in its deinit method explicitly. The object in question has listers that get added to it (closures) and these closures are all executed within the deinit method. It is within these closures that accesses of the object is being performed with unowned references. And it is the replacement of those unowned references with unowned(unsafe) references that results in EXC_BAD_ACCESS' from no longer occuring.
It is these unowned(unsafe) references that I'm referring to when asking if they're safe to use if always executed during the object in question's deinit.
Original
I wrote a lot of code predicated on being able to clean up unowned references in the deinitializers of their unowned object. Lo and behold, that is not a feature of unowned references. But apparently it is of unowned(unsafe) references, at least that is the way it appears to be working right now — what once caused a crash accessing an unowned reference during its object's deinitialization, now is no longer crashing and is working as expected.
If guaranteed that all unowned references will not be accessed after deinitialization of their object, would it be safe to use it?
For more details, the aforementioned cleaning up entails removing the object from a set where the hashability is based off its contents' object identities. So if it's a plain unowned reference, when the set attempts to access its hash, it will crash if that procedure is being performed while the object is already deinitializing.
The reason the objects aren't removed from the set before they are deinitialized is because this code is a component of library that enables the addition of nodes to a directed acyclic graph. As a feature, I decided that I would not require consumers of the library to have to remove the nodes when they're done with them, they can simply add them to the graph, then when they're done, release their object (the node) as they would anyways, and because the library adds listeners onto the nodes to remove them from the graph in their deinitializers, it was anticipated that it wouldn't be a problem — that the graph would be able to be cleaned up transparently. Obviously it's a little more complicated now that it's apparent that unowned(safe) references can't be accessed while the object they're referencing is deinitializing.
If unowned(unsafe) works in the way it appears to, it would be a solution to this problem.
The only difference between unowned(safe) and unowend(unsafe) is that the save variant is implemented using proxy objects and it will reliably crash your app when you access it illegally.
The unsafe variant on the other hand is just a plain C-Style pointer which will sometimes "just work" (if by coincidence the memory has not been reused anyway) and sometimes will strangely crash or just report unpredicable results.
unowned is the same as unowned(safe)
Nevertheless, during deinit you may access all the propertys of your object, see The Documentation
And also:
I am not sure exactly what you have implemented but it looks like you are trying to duplicate the mechanism with tables Swift uses internally for keeping track of deallocations of weak references.
If guaranteed that all unowned references will not be accessed after
deinitialization of their object, would it be safe to use it?
Yes it would be safe. If you have this guarantee I think it would also be simpler to turn all your variables to implicitly unwrapped weak variables.
So if it's a plain unowned reference, when the set attempts to access
its hash, it will crash if that procedure is being performed while the
object is already deinitializing.
Obviously it's a little more complicated now that it's apparent that
unowned(safe) references can't be accessed while the object they're
referencing is deinitializing.
I do not think this is the reason for the crash, the memory is freed after deinitialization, during deinitialization you still have access to the instance to perform any manual cleanup you need, I would suggest to replace the complicated solution that keeps track of deallocated references, and simply rely on Swift to set to nil objects that are deallocated using weak references. If you do not want to refactor you code to handle optionals when make them explicitly unwrapped.
However if during deinitialization you access the object from an other reference(outside deinit) it will fail, this is to ensure consistency. See here that access an instance that is deinitialized will cause an app to crash.
I have a bunch of objects and I try and simulate events with them.
id completedSelectorTarget;
SEL nextTripSelector;
Then I call perform selector on the selector target.
Well I created a double reference where the listener of the event completedSelectorTarget retains my object and completedSelectorTarget is retained by the object as well.
How do I avoid this? Is there a better way to do events? I thought to remove the retain on completedSelectorTarget, but then what will happen when I call perform selector? The whole thing will crash wont it? Is there a way to check if completedSelectorTarget has been released before I call perform selector? Or perhaps I'm just doing this wrong?
Yes you are correct, you should avoid circular retains.
The way to do this is to decide on an ownership model for these objects. This means deciding which object should have the final say over the life and death of these objects, and a good way to choose this is to pick the object that creates these objects as the owner and main retainer of them. It's not the only way it can be done, but that should be a good start in the right direction. All other relationships should be weak and use assign for the property. In this way you can be sure that when the owner of the objects decides that they should go away, that they will. The owner could also cause these weak links to be cleaned perhaps by calling a method that separates the weak connection by setting the target properties to nil. This is done in case any other object is hanging onto either of the objects and causing the selectors to fire on the targets that have been deallocated.
So you can remove the retain from the completedSelectorTarget properties and make weak connections between the objects.
#property (assign) __weak id completedSelectorTarget;
Once that is done, decide which object is the owner of these objects and make it retain them, either directly using #propery (retain) ..., or perhaps by storing them in a container such as an array or dictionary. When this retain, or container, is released, your object(s) should deallocate or at the very least wind up on an autorelease pool. And you now have a single owner that you can go to to make sure your objects get deallocated.
For now I'm using NSNotification Center. I notice that it crashes as well if you don't remove the observer when it is released. Still it should save me time from writing my own code.
I am testing the following code below. ffv is declared in the interface file.
ffv = [[FullFunctionView alloc] initWithFrame:self.view.bounds];
NSLog(#"%i", [ffv retainCount]); // prints 1
[self.view insertSubview:ffv belowSubview:switchViewsBtn];
NSLog(#"%i", [ffv retainCount]); // prints 2
[ffv release]; // you can release it now since the view has ownership of ffv
NSLog(#"%i", [ffv retainCount]); // prints 1
if (ffv == nil)
NSLog(#"ffv is nil");
// "ffv is nil" is not printed
[ffv testMethod]; // "test method called" is printed
this is my [ffv testMethod] implementation
- (void)testMethod
{
NSLog(#"test method called");
}
What I deduce in this case is that even if you release an object with retain count 2, you lose ownership of that object however, the reference is still kept.
Now, my question are:
Is my deduction correct?
Is there anything else important that can be deduced from this?
What are the complications caused by still keeping (using) ffv and calling methods from ffv? (My opinion is that this is ok since the view will always own ffv and won't release it until someone calls viewDidUnload. And as long as I don't pass ffv's reference to other objects.)
There are a couple of problems with using ffv after you have released it and it's only retained by your view controller's view.
1) It introduces a potential for future bugs, because later you might not remember that ffv is otherwise not retained. When you release the view (e.g. by replacing it with another view), you have a dangling pointer that you still hold a reference to.
2) In the special case of a UIViewController the view could be released at any time (you usually never call viewDidUnload yourself). The default behavior of UIViewController, when receiving a memory warning and the view is currently not visible, is to release the view, so unless you set the reference to nil in viewDidUnload, you have a dangling pointer again, even though you never explicitly released the view yourself.
1) Is my deduction correct?
Your deduction is correct. The Memory Management Programming Guide explains that each object has one or many owners. You own any object you create using any method starting with alloc, new, copy, or mutableCopy. You can also take ownership of an object using retain. When you're done with an object, you must relinquish ownership using release or autorelease.
Releasing the object doesn't change the value of any variables that reference that object. Your variable contains the object's memory address until you reassign it, no matter what retain count the object has. Even if the object's retain count goes to zero, causing the object to get deallocated, your variable will still point at that same address. If you try to access the object after it's been deallocated, your app will normally crash with EXC_BAD_ACCESS. This is a common memory management bug.
2) Is there anything else important that can be deduced from this?
Nothing comes to mind.
3) What are the complications caused by still keeping (using) ffv and calling methods from ffv? (My opinion is that this is ok since the view will always own ffv and won't release it until someone calls viewDidUnload. And as long as I don't pass ffv's reference to other objects.)
When you call release, you are telling the Objective C runtime that you no longer require access to the object. While there may be many cases like this one in which you know the object will still exist, in practice you really shouldn't access an object after calling release. You'd just be tempting fate and setting yourself up for future bugs.
I personally don't like peppering my code with release statements, because I don't trust myself to remember them 100% of the time. Instead, I prefer to autorelease my variables as soon as I allocate them like this:
ffv = [[[FullFunctionView alloc] initWithFrame:self.view.bounds] autorelease];
This guarantees that ffv will exist at least until the end of the method. It will get released shortly thereafter, typically before the next iteration of the run loop. (In theory this could consume excessive memory if you're allocating a large number of temporary objects in a tight loop, but in practice I've never encountered this case. If I ever do, it will be easy to optimize.)
The object is not deallocated until the retain count goes to 0. As long as it's not deallocated, you can keep using it without trouble. By retaining it you ensure that it won't be deallocated under your feet; however, if you retain another object that you know retains the first object, you can get away with this form of "indirect retaining". Don't complain when you move things around later and things start breaking, though.
if (ffv == nil)
NSLog(#"ffv is nil");
// "ffv is nil" is not printed
That's correct, releasing an object does not set the pointer to nil even if it is dealloced at that time. Good practice is to always set your pointer to nil after you release it.
You are correct to say that after you released it, it wasn't dealloced because the view still had a retain on it. But that's not how you should be thinking about it. If you want to use that object and you want it to be alive, retain it. Doesn't matter who else is retaining it. Your object has nothing to do with those other objects. You want it, retain it. You're done with it, release it and set your pointers to nil. If you don't set it to nil and everyone else also released it, you will have a dangling pointer to an object that was dealloced, and that will cause you a crash and much grievance.
so this:
[ffv release]; // you can release it now since the view has ownership of ffv
ffv = nil; // you released it, so that means you don't want it anymore, so set the pointer to nil
if you still want to use it, don't release it until you're done with it.
Well, I'm not sure 'losing' ownership is the right term. In Objective-C you have to carefully marshal your ownership of the object. If you create or retain an object, you are responsible for releasing it (either directly or via an autorelease pool). When you call release however, you don't lose a reference to the object, if something else has retained it, it will still be in memory, and your pointer will still potentially point to it.
You have a pointer ffv which is just a pointer to some memory, and you have the object which is created in the first line that ffv points to.
By calling release, you are stating that you no longer require the ponter ffv to point to a valid object, that in this context you would be happy for the object to be deallocated. The pointer still points to that bit of memory, and it is still there because its retain count was increased by assigning it to the view.
The line [ffv testMethod] is in danger of not working, as it follows the release and may not point to a valid object. It only works because something else is keeping it alive. ffv still has the same address value that it had when it was first assigned.
So in order:
Your deduction is correct.
Not really.
You shouldn't use ffv after the release call. You have no guarantee that the object is going to be there for you.
These are pointers we are using here, not references like you find in Java or C#. You have to marshal your ownership of the object, you create it, have some pointers to it and by careful management of retain and release calls you keep it in memory for as long as you need it.
I created
object *Obj = [[Obj alloc] init];
Obj retain count is 1. After I release it, the object is deallocated.
If I try to release the object again, what will happen?
EXT_BAD_ACCESS most likely since your object reference is no longer valid.
The code may crash. But it may just as well work most of the time.
You brake a rule, you may get caught. But you may just as well get away with it, living in constant fear that you may get caught later on.
There’s an important distinction to be made here: you can’t release the object again, because the object no longer exists. If you send another message to the variable (be it release or any other message), the behaviour is undefined because the variable is no longer known to point to a valid object. (It’s possible that the address the variable now points to will have been reused for a different object, in which case it may not crash, but of course that’s still a bug.)
Once the retain count of an object reaches 0, it is released, and all further attempts to access it will result in random behaviour.
If you use autorelease instead, the retain count will not be lowered, and the object will be put in the autoreleasepool. The object will only lower its retain count once it reaches the autoreleasepool drain command, which is usually done on a much higher level in a much broader scope. If you really need the object after the autoreleasepool is drained, you should retain it before drain is executed, or else it will have exactly the same behaviour as in my first paragraph.
Get EXT_BAD_ACCESS. Because of you are already release it and now try to release again.
your object reference is no longer valid.
I have several objects in my app that can become nil at some point and I have methods that in theory are used to put these objects to nil.
But, if I try to put to nil an object that does not exist, the app will crash.
for example...
[object1 release];
object1 = nil;
//... and after that
[object1 removeFromSuperview]; // this will crash
Then I thought, why not testing to see if the object exists before removing...
if (object1 != nil)
[object1 removeFromSuperview];
// this will crash too, because object1 cannot be tested for nil because it does not exist
How can I check if the object exists before testing if it is nil?
something as
if (object1 exists( {
if(object1 != nil))
[object1 removeFromSuperview)
}
is this possible?
I ADDED THIS TO CLARIFY...
what I mean is this: imagine I have object1 declared on the header and initialized on the code. So, it exists and points to a valid reference. At some point, the object may be released, so the reference still points to an object but the object was freed. Even if I put the object to nil after releasing, I cannot do anything with it.
The problem is this: I have some methods that are asynchronous. One of them scans for some objects and remove them if they are found. I must check if the object exists and the reference points to a valid object before releasing it again. This is the point: how do I test if the object exists and its reference points to a valid existent object before releasing it again, to void releasing again an object that is already released and crash the app.
In short, your question of determining if the pointer is still valid is going down the wrong path.
After you release an object, you must immediately set its value to null so that you no longer control it. If two methods are running asynchronously accessing the same object, they must be synchronized at that point so that releasing and setting to null happens at the same time in one thread before the other has a chance to interrupt.
Are you just speculating, or have you actually tried this? Because in other programming languages, invoking a method on nil will cause a crash. In Objective-C this is not true. In Objective-C, you CAN send messages to nil without causing a crash. These messages simply have no effect.
In fact, you can be really obscene and do the following without a crash:
[(id)nil setTitle:#"Testing"]; // This will not cause a crash
If your app is crashing, it is not because you are messaging nil. It is possible, however, that you are failing to set a pointer to nil and you are messaging an object in memory that you do not own. Given the details you provided in your update, namely that you have an asynchronous thread accessing these objects, I think it is very likely you are sending messages to pointers whose object has already been released, but have not yet been set to nil.
I have compared an object to nil before without any problems.