I need to know how to solve a system of nonlinear equations but varying a parameter, so that every time you change that parameter will throw me the result of that system (need all results), I thought a for, which is changing the parameter, solve the equation and each result is stored in a spreadsheet, the problem is that as you can not solve the system and as a result I throw and nonsymbolic numerical values, they give you an example of the system that must be solved:
0 = 125 +100 * cos (x) -25 * cos (a) -175 * cos (y)
0 = 100 * sin (x) -25 * sin (a) -175 * sin (y)
In the parameter to be changed is a and going to go keeping the corresponding values of x and y in the spreadsheet.
You need to know how to solve non-linear equations. That means picking a starting point, creating an incremental, iterative solution, and providing tolerances for stopping. You need to know that not every non-linear equation has a solution. Your choice of starting point and iterative strategy might have a profound influence on whether or not you can find a solution and the efficiency of the process.
What are you solving for here? You have two equations; I'll assume two unknowns (x, y).
You need more basic information before you can use a tool like Matlab. It might encapsulate a lot of the details for you, but it won't make algorithm choices for you. You still have to know something, especially about your system of equations.
Start by reading stuff like this:
http://www.physicsforums.com/archive/index.php/t-106606.html
I'd recommend plotting your equations over a range of x and y. You should know what the terrain looks like before you start. You're dealing with trig functions, so x and y vary from zero to 2π and then repeat. Plot a few periods of x and y and see what you get back.
You can use Matlab's symbolic solver if you have the Symbolic toolbox...
syms x y a
b(1) = 100 * sin (x) -25 * sin (a) -175 * sin (y)
b(2) = 125 +100 * cos (x) -25 * cos (a) -175 * cos (y)
z = solve(b,x,y)
Xsoln = simplify(z.x)
Ysoln = simplify(z.y)
where Xsoln and Ysoln denote the solutions written in terms of the value of a. You can then evaluate the solutions at multiple values of a by either doing
aval = 0.5; % or whatever value you want
subs(Xsoln,a,aval)
or by converting the solution to a function handle and evaluating it that way (this is the preferred approach if you need to evaluate at many points):
xf = matlabFunction(Xsoln)
xf(0.5)
Related
I have a curve that looks like an exponentiel function, I would like to fit this curve with this equation :
The goal is to find the value of A, T and d which will minimize V with my initial curve.
I did a function that is able to do it but it takes 10 seconds to run.
3 loops that test all the values that I want to and at the end of the 3 loops I calculate the RMSD (root mean square deviation) between my 2 curves and I put the result in a vector min_RMSN, at the end I check the minimum value of min_RMSD and it's done...
But this is not the best way for sure.
Thank you for your help, ideas :)
Matlab has a built in fminsearch function that does pretty much exactly what you want. You define a function handle that takes the RMSE of your data vs. the function fit, pass in your initial guess for A, T and d, and get a result:
x0 = [A0, T0, d0]
fn = #(x) sum((x(1) * (1 - exp(-x[2] / (t - x[3]))) - y).^2)
V = fminsearch(#fn, x0)
Here t is the x-data for the curve you have, y are the corresponding y-values and, A0, T0, d0 are the initial guesses for your parameters. fn computes the suquare of the RMSE between your ideal curve and y. No need to take the square root since you minimizing the square will also minimize the RMSE itself, and computing square roots takes time.
I've been looking around but I can't seem to figure out how I should use fsolve to solve my system of nonlinear equations.
so I have a function k, and I know that I want .01 as the starting value (required input for fsolve I believe). I also know that k(1000) =12
Lastly, I have a formula for k,
k(N) = (1/(k(N).^.5 + .9*k(N) -k(N+1))) - ((.94 * .5 *k(N+1)^(1-.5) + .9)/(k(N+1)^.5 +
.9*k(N+1) - k(N+2)))
with N 1:1000. I figured I could just say fsolve(k(N), .01), but with the formula in place of k(N) (or is defining k(N) in a separate function necessary?), but I exceed the dimensions of N and also have issues with dimensions matching since there is N, N+1, and N+2 in the equation.
I think my issue may be stemming from the fact that I have defined vector valued functions where in reality I want them to be single valued, from 1:1000,but I don't know how to represent this in matlab (obviously I can't type in 1000 equations).
Any ideas, suggestions, or comments?
I'm not familiar with expert math. so I don't know where to start from.
I have get a some article like this. I am just following this article description. But this is not easy to me.
But I'm not sure how to make just one polynomial equation(or something like that) from above 4 polynomial equations. Is this can be possible way?
If yes, Would you please help me how to get a polynomial(or something like equation)? If not, would you let me know the reason of why?
UPDATE
I'd like to try as following
clear all ;
clc
ab = (H' * H)\H' * y;
y2 = H*ab;
Finally I can get some numbers like this.
So, is this meaning?
As you can see the red curve line, something wrong.
What did I miss anythings?
All the article says is "you can combine multiple data sets into one to get a single polynomial".
You can also go in the other direction: subdivide your data set into pieces and get as many separate ones as you wish. (This is called n-fold validation.)
You start with a collection of n points (x, y). (Keep it simple by having only one independent variable x and one dependent variable y.)
Your first step should be to plot the data, look at it, and think about what kind of relationship between the two would explain it well.
Your next step is to assume some form for the relationship between the two. People like polynomials because they're easy to understand and work with, but other, more complex relationships are possible.
One polynomial might be:
y = c0 + c1*x + c2*x^2 + c3*x^3
This is your general relationship between the dependent variable y and the independent variable x.
You have n points (x, y). Your function can't go through every point. In the example I gave there are only four coefficients. How do you calculate the coefficients for n >> 4?
That's where the matricies come in. You have n equations:
y(1) = c0 + c1*x(1) + c2*x(1)^2 + c3*x(1)^3
....
y(n) = c0 + c1*x(n) + c2*x(n)^2 + c3*x(n)^3
You can write these as a matrix:
y = H * c
where the prime denotes "transpose".
Premultiply both sides by transpose(X):
transpose(X)* y = transpose(H)* H * c
Do a standard matrix inversion or LU decomposition to solve for the unknown vector of coefficients c. These particular coefficients minimize the sum of squares of differences between the function evaluated at each point x and your actual value y.
Update:
I don't know where this fixation with those polynomials comes from.
Your y vector? Wrong. Your H matrix? Wrong again.
If you must insist on using those polynomials, here's what I'd recommend: You have a range of x values in your plot. Let's say you have 100 x values, equally spaced between 0 and your max value. Those are the values to plug into your H matrix.
Use the polynomials to synthesize sets of y values, one for each polynomial.
Combine all of them into a single large problem and solve for a new set of coefficients. If you want a 3rd order polynomial, you'll only have four coefficients and one equation. It'll represent the least squares best approximation of all the synthesized data you created with your four polynomials.
My project require me to use Matlab to create a symbolic equation with square wave inside.
I tried to write it like this but to no avail:
syms t;
a=square(t);
Input arguments must be 'double'.
What can i do to solve this problem? Thanks in advance for the helps offered.
here are a couple of general options using floor and sign functions:
f=#(A,T,x0,x) A*sign(sin((2*pi*(x-x0))/T));
f=#(A,T,x0,x) A*(-1).^(floor(2*(x-x0)/T));
So for example using the floor function:
syms x
sqr=2*floor(x)-floor(2*x)+1;
ezplot(sqr, [-2, 2])
Here is something to get you started. Recall that we can express a square wave as a Fourier Series expansion. I won't bother you with the details, but you can represent any periodic function as a summation of cosines and sines (à la #RTL). Without going into the derivation, this is the closed-form equation for a square wave of frequency f, with a peak-to-peak amplitude of 2 (i.e. it goes from -1 to 1). Recall that the frequency is the amount of cycles per seconds. Therefore, f = 1 means that we repeat our square wave every second.
Basically, what you have to do is code up the first line of the equation... but how in the world would you do that? Welcome to the world of the Symbolic Math Toolbox. What we will need to do before hand is declare what our frequency is. Let's assume f = 1 for now. With the Symbolic Math Toolbox, you can define what are considered as mathematics variables within MATLAB. After, MATLAB has a whole suite of tools that you can use to evaluate functions that rely on these variables. A good example would be if you want to use this to define a closed-form solution of a function f(x). You can then use diff to differentiate and see what the derivative is. Try it yourself:
syms x;
f = x^4;
df = diff(f);
syms denotes that you are declaring anything coming after the statement to be a mathematical variable. In this case, x is just that. df should now give you 4x^3. Cool eh? In any case, let's get back to our problem at hand. We see that there are in fact two variables in the periodic square function that need to be defined: t and k. Once we do this, we need to create our function that is inside the summation first. We can do this by:
syms t k;
f = 1; %//Define frequency here
funcSum = (sin(2*pi*(2*k - 1)*f*t) / (2*k - 1));
That settles that problem... now how do we encapsulate this into an infinite sum!? The sum command in MATLAB assumes that we have a finite array to sum over. If you want to symbolically sum over a function, we must use the symsum function. We usually call it like this:
funcOut = symsum(func, v, start, finish);
func is the function we wish to sum over. v is the summation variable that we wish to use to index in the sum. In our case, that's k. start is the beginning of the sum, which is 1 in our case, and finish is where we wish to finish up our summation. In our case, that's infinity, and so MATLAB has a special keyword called Inf to denote that. Therefore:
xsquare = (4/pi) * symsum(funcSum, k, 1, Inf);
xquare now contains your representation of a square wave defined in terms of the Symbolic Math Toolbox. Now, if you want to plot your square wave and see if we have this right. We can do the following. Let's go between -3 <= t <= 3. As such, you would do something like this:
tVector = -3 : 0.01 : 3; %// Choose a step size of 0.01
yout = subs(xsquare, t, tVector);
You will notice though that there will be some values that are NaN. The reason why is because right at a multiple of the period (T = 1, 2, 3, ...), the behaviour is undefined as the derivative right at these points is undefined. As such, we can fill this in using either 1 or -1. Let's just choose 1 for now. Also, because the Fourier Series is generally a complex-valued function, and the square-wave is purely real, the output of this function will actually give you a complex-valued vector. As such, simply chop off the complex parts to get the real parts only:
yout = real(double(yout)); %// To cast back to double.
yout(isnan(yout)) = 1;
plot(tVector, yout);
You'll get something like:
You could also do this the ezplot way by doing: ezplot(xsquare). However, you'll see that at the points where the wave repeats itself, we get NaN values and so there is a disconnect between the high peak and low peak.
Note:
Natan's solution is much more elegant. I was still writing this post by the time he put something up. Either way, I wanted to give a more signal processing perspective to how to do this. Go Fourier!
A Fourier series for the square wave of unit amplitude is:
alpha + 2/Pi*sum(sin( n * Pi*alpha)/n*cos(n*theta),n=1..infinity)
Here is a handy trick:
cos(n*theta) = Re( exp( I * n * theta))
and
1/n*exp(I*n*theta) = I*anti-derivative(exp(I*n*theta),theta)
Put it all together: pull the anti-derivative ( or integral ) operator out of the sum, and you get a geometric series. Then integrate and finally take the real part.
Result:
squarewave=
alpha+ 1/Pi*Re(I*ln((1-exp(I*(theta+Pi*alpha)))/(1-exp(I*(theta-Pi*alpha)))))
I tried it in MAPLE and it works great! (probably not very practical though)
I have a symbolic function, whose zeros I am particular interested in knowing. I have searched through google, trying to find something related to my query, but was unsuccessful.
Could someone please help me?
EDIT:
T(x,t) = 72/((2*n+1)^2*pi^3)*(1 - (2*n+1)^2*pi^2*t/45 + (2*n+1)^4*pi^4*t^2/(2*45^2) - (2*n+1)^6*pi^6*t^3/(6*45^3))*(2*n+1)*pi*x/3;
for i=1:1:1000
T_new = 72/((2*i+1)^2*pi^3)*(1 - (2*i+1)^2*pi^2*t/45 + (2*i+1)^4*pi^4*t^2/(2*45^2) - (2*i+1)^6*pi^6*t^3/(6*45^3))*(2*i+1)*pi*x/3;
T = T + T_new;
end
T = T - 72/((2*n+1)^2*pi^3)*(1 - (2*n+1)^2*pi^2*t/45 + (2*n+1)^4*pi^4*t^2/(2*45^2) - (2*n+1)^6*pi^6*t^3/(6*45^3))*(2*n+1)*pi*x/3;
T = T(1.5,t);
T_EQ = 0.00001
S = solve(T - T_EQ == 0,t);
The problem that I get is that S is an a vector which contains imaginary numbers. I expected a real number, because I am trying to calculate a time.
Here is a little background as to what I am trying to do:
http://hans.math.upenn.edu/~deturck/m241/solving_the_heat_eqn.pdf
In the given link is the heat equation solved for a particular one-dimensional case. The temperature distribution, that satisfies the prescribed boundary and initial conditions, is given on page 50, I believe.
What I would like to do is find the time at which the one-dimensional object equilibrates with the environment, which is held at a constant temperature of T=0. As far as I know, the easiest way to do this would be to use the Taylor expansion of the exponential function, using only the first few terms, because I expect the equilibrium time to be relatively short; and then use the small angle approximation for the sine function, because the rod has a relatively small length. Doing just this, I made a for loop to generate terms just as the summation function would--as you can see, I used 1000 terms.
Does what I am doing seem wrong to anyone? If there is a better method, could someone please recommend it?
You shouldn't be surprised to see imaginary roots provided that at least one root is real and positive, corresponding to your time. The question is if the time makes any sense due to the approximations that you're making. Have you plotted the the actual function to get a rough approximation for where the zero is?
I can't really comment on the particular problem you're trying to solve. You need to make sure that you're using enough Taylor expansion terms an that they are accurate for the domain. Have you tried this leaving in the exp and/or sin? Is there any reason that you can't just use zero? And have you checked that your summation has converged after 1,000 terms? Or does it converge much sooner or not at all?
The main question is why are you using symbolic math at all to solve this? This seems like a numeric problem unless you're experiencing overflow/underflow issues in your summation. You can find the zero using fzero in this case:
N = 32; % Number of terms in summation
x = 1.5;
T_EQ = 1e-5;
n = (2*(0:N)+1)*pi;
T = #(t)sum((72./n.^3).*exp(-n.^2*t/45).*sin(n*x/3))-T_EQ;
S = fzero(T,[0 1e3]) % Bounds around a root guarantees solution if function monotonic
which returns
S =
56.333877640358708
If you're going to use solve, I'd do something like the following to avoid for loops:
syms t
N = 32;
x = 1.5;
T_EQ = 1e-5;
n = (2*sym(0:N)+1)*sym(pi);
T(t) = sum((72./n.^3).*exp(-n.^2*t/45).*sin(n*x/3));
S = double(solve(T-T_EQ==0,t))
or, using symsum:
syms n t
N = 32;
x = 1.5;
T_EQ = 1e-5;
T(t) = symsum((72/(pi*(2*n+1))^3)*exp(-(pi*(2*n+1))^2*t/45)*sin(pi*(2*n+1)*x/3),n,0,N);
S = double(solve(T-T_EQ==0,t))
Lastly, your symbolic solutions are not even exact as some your pi variables are being converted to rational approximations. pi is floating point. Things like pi*t are generally safe if t is symbolic, because pi will be recognized as such. However, pi^2 is calculated in floating-point before being converted to symbolic due to order of operations. In general your should use sym('pi') or sym(pi) in symbolic expressions.
Assuming you have a polynomial or trigonometric function of x or y, and what you mean by "zeros" is the values where the function crosses the axis, i.e., either x or y is zero, you can call the value of the function when a variable is 0. An example:
syms x y
f=-cos(x)*exp(-(x^2)/40);
ezsurf(f,[-10,10])
F=matlabFunction(f,'vars',{[x]});
F([0])
The ezsurf just visualizes the plot. If you want a function of both x and y, you do something like the following:
syms x y
f=-cos(x)*cos(y)*exp(-(x^2+y^2)/40);
ezsurf(f,[-10,10])
F=matlabFunction(f,'vars',{[x,y]});
for y=0
solve(f)
end
This will give you the value of the function for which integer multiples of x correspond to zero points for y (values of the function that are on the y=0 plane).