number of holes in convex hull in matlab - matlab

I have used convhulln in matlab to find the surrounding shape of a set of data points in 3D. See history in:
Convhull in Matlab.
A good samaritan helped me to find out how it works in matlab. I need to know the propertion of gaps (holes) inside the 3D volume to the total volume of the convex hull. Is this possible?
thanks.

If I understood your question, I would try this:
find the convex hull of your set of points, which I will call S, using convhull
find the convex hull of the set S', where
S' := S - points_defining_the_convex_hull(S)
(i.e., S' contains the points of S which do not "enlarge" its convex hull, thus the ones which are inside the convex hull itself.)
make the difference/proportion between the volumes of S and S' (trivial, both are convex).
There is a strong assumption on the topology of the hole considered, i.e.
"the convex hull of the S' is the hole".
If you have a more complex topology of holes you can't avoid making active use of it (my guess, of course).

Related

How to check if given 3d point is outside convex hull

I'm working on a science project. I have a list of xyz-coordinates of voronoi diagram vertices, and a list of points that create my protein's convex-hull (from triangulation). Now some of the vertices lie quite far from the hull and I'd like to filter them out. How can I do it in c++ ? For now it doesn't have to be super optimised, I'm only focused on removing those points.
visualization
I was also thinking to check if a line from voronoi vertex(red crosses) to center of protein(pink sphere) is intersecting with hull face at any point, but I'm not sure how to achive that.
I've read that you can check if a point is inside a polygon by counting the times an infinite line from the point is crossing the hull, but that was for two dimensions. Can similar approach be implemented to suit my needs ?
https://www.geeksforgeeks.org/how-to-check-if-a-given-point-lies-inside-a-polygon/
Let's start with the two-dimensional case. You can find the solution to that on CS.SX:
Determine whether a point lies in a convex hull of points in O(logn)
The idea is that each two consecutive points on the convex hull define a triangular slice of the plane (to some internal point of the hull); you can find the slice in which your point is located, and check whether it's closer to the internal point than the line segment bounding the slide.
For the three-dimensional case, I'm guessing you should be able to do something similar, but the search for the 3 points forming the relevant triangle might be a little tricky. In particular, it would also depend on how the convex hull is represented - as in the 2-d case the convex hull is just a sequence of consecutive points on a cycle.
I know this doesn't quite solve your problem but it's the best I've got given what you've written...

Convex Hull with a predefined number of vertices

I am working on image segmentation and I thought the convex hull can provide me with a simple solution to my problem. Currently I have polygons with for sides (see image below). Due to image processing issues, the shape does not have clean straight sides and hence when I use the standard convex hull (in Matlab) I may get more than the four main corners to define it.
My goal is to force the convex hull algorithm to find the best 4 vertices that will enclose my polygons (i.e. 4 best enclosing vertices per polygon). Is this possible? An example code will be appreciated.
Thanks
The problem of the minimum area bounding polygon is briefly mentioned in "Geometric applications of a matrix-searching algorithm" (see Applications section). It is not simple and is probably not the way for you.
For an easier (but approximate) answer to your question, you can consider the four cardinal directions and find the farthest points in these, which define a quadrilateral. (Also consider the four intermediate directions, which are more appropriate for an axis-aligned rectangle.)
If you insist having an enclosing quadrilateral, you can translate the four edges to the farthest points in the respective perpendicular directions, and find the pairwise intersections.
If you insist having a rectangle, compute the convex hull and find the minimum area or minimum perimeter bounding rectangle by the Rotating Calipers method. https://geidav.wordpress.com/tag/rotating-calipers/

Computing the Convex Hull of two non intersecting polygon in scipy

Is there any scipy method that computes the Convex hull of two non intersecting polygon? I have 2 set of points P1 and P2 and their convex hulls CH(P1) and CH(P2), where the hulls are non intersecting. I want to find the Convex hull of union of points in P1 and P2. Is there any build in method in scipy?
Documentation for Scipy's convex hull implementation can be found here. Simply concatenate the two arrays of points to obtain their union. Feed this set to the convex hull algorithm.
Every point in each polygon lies within the convex hull of its polygon. In turn, both polygons have their convex hull contained entirely inside the larger convex hull. So, every point in each polygon lies within the larger convex hull, meaning it is also valid for the complete union of polygon points.

I have a point set in image,how to find the External irregular shape circling all the points by Matlab

I got a point set after executing SIFT algorithm.Now I want to find the external irregular shape of those points.Is there anyone knowing the relevant functions in Matlab? Notice that I don't want the convex hall.Thank you!
If you want convex hull, (unclear based on your comment... you can edit questions btw), look up convhull.
If you don't want convex hull, a Delaunay triangulation will probably get you started since the result captures both the convex hull of the points, but also the internal structure such that you may be able to remove some edges from the outside of the returned triangulation.

How do I break a polyhedron into tetrahedra in MATLAB?

I have a polyhedron, with a list of vertices (v) and surfaces (s). How do I break this polyhedron into a series of tetrahedra?
I would particularly like to know if there are any built-in MATLAB commands for this.
For the convex case (no dents in the surface which cause surfaces to cover each other) and a triangle mesh, the simple solution is to calculate the center of the polyhedron and then connect the three corners of every face with the new center.
If you don't have a triangle mesh, then you must triangulate, first. Delaunay triangulation might help.
If there are holes or caves, this can be come arbitrarily complex.
I'm not sure the OP wanted a 'mesh' (Steiner points added) or a tetrahedralization (partition into tetrahedra, no Steiner points added). for a convex polyhedron, the addition of Steiner points (e.g. the 'center' point) is not necessary.
Stack overflow will not allow me to comment on gnovice's post (WTF, SO?), but the proof of the statement "the surfaces of a convex polyhedron are constraints in a Delaunay Tesselation" is rather simple: by definition, a simplex or subsimplex is a member in the Delaunay Tesselation if and only if there is a n-sphere circumscribing the simplex that strictly contains no point in the point set. for a surface triangle, construct the smallest circumscribing sphere, and 'puff' it outwards, away from the polyhedron, towards 'infinity'; eventually it will contain no other point. (in fact, the limit of the circumscribing sphere is a half-space; thus the convex hull is always a subset of the Delaunay Tesselation.)
for more on DT, see Okabe, et. al, 'Spatial Tesselations', or any of the papers by Shewchuk
(my thesis was on this stuff, but I remember less of it than I should...)
I would suggest trying the built-in function DELAUNAY3. The example given in the documentation link resembles Aaron's answer in that it uses the vertices plus the center point of the polyhedron to create a 3-D Delaunay tessellation, but shabbychef points out that you can still create a tessellation without including the extra point. You can then use TETRAMESH to visualize the resulting tetrahedral elements.
Your code might look something like this (assuming v is an N-by-3 matrix of vertex coordinate values):
v = [v; mean(v)]; %# Add an additional center point, if desired (this code
%# adds the mean of the vertices)
Tes = delaunay3(v(:,1),v(:,2),v(:,3)); %# Create the triangulation
tetramesh(Tes,v); %# Plot the tetrahedrons
Since you said in a comment that your polyhedron is convex, you shouldn't have to worry about specifying the surfaces as constraints in order to do the triangulation (shabbychef appears to give a more rigorous and terse proof of this than my comments below do).
NOTE: According to the documentation, DELAUNAY3 will be removed in a future release and DelaunayTri will effectively take its place (although currently it appears that defining constrained edges is still limited to only 2-D triangulations). For the sake of completeness, here is how you would use DelaunayTri and visualize the convex hull (i.e. polyhedral surface) as well:
DT = DelaunayTri(v); %# Using the same variable v as above
tetramesh(DT); %# Plot the tetrahedrons
figure; %# Make new figure window
ch = convexHull(DT); %# Get the convex hull
trisurf(ch,v(:,1),v(:,2),v(:,3),'FaceColor','cyan'); %# Plot the convex hull