Matlab and color point specific areas - matlab

I have a grid with fixed points and random generated user's positions.
Distances for each point and user are measured from the beginning of the axis 0.0. I want to associate each user to the closest fixed point. I calculate both distance vectors and the min of them per user is pointing to the closest fixed point.
But i am stuck on finding a working way so each fixed point and associated user have something same in plot, p.e. same color and color area.
So my problem is two dimensional:
First is to manage to associate each user to its closest fixed poind
How to color the result.
Thank you.

For the point searching I would use dsearchn for this kind of thing. You can use it with or without delaunay triangulation depending on the ratio of users to fixed sites. I tend to use it the quick and easy way, which in your case would be:
indices_of_closest_fixed_points = dsearchn(fixed_points, user_points)
As for the colors I would suggest you define a color map using something like
mymap = lines(n)
where n is the number of fixed points you have. You can then use scatter to plot the points with specific colors and sizes. Perhaps something like this to get you started:
x = user_points(1,:);
y = user_points(2,:);
S = []; % point sizes, left empty for now
C = mymap(indices_of_closest_fixed_points,:); %colors
scatter(x,y,S,C);

To find the nearest point simply compute the euclidean distance between each user point and the complete set of fixed points. Then the index of the shortest distance will also be the index of the fixed point.
dist = calc_dist(fixedPts, aSingleUserPt)
[~, idx] = min(dist);
To solve the color problem, you'll need to create a colormap from a fixed point index to a unique color. Then when you plot a user point you will set the color of the plot equal to the colormap evaluated at idx
Note the euclidean distance is very easy to calcuate:
euc_dist = sqrt( (x1 - x2)^2 + (y1 - y2)^2 );
There are functions on File Exchange that will let you compute this quickly.

Related

How to make a plot of a circle with dashed coloured border in MATLAB?

So i have this code to obtain radial gravity on Earth in function of the latitude:
G=6.6e-11;
M=5.976e24;
N=1000;
r=6371000;
w=2*pi/(24*3600);
for i=1:1:360
Theta=i*pi/180;
x(i)=i;
Vi(i)=-G*M/(r*r);
Phii(i)=r*w*w*sin(Theta)*sin(Theta);
gr(i)=Vi(i)+Phii(i);
end
plot(x,gr)
And it runs well. I want to make a graph of a circle made of a border of points (representing angle (i)) that change colour according to the value of gr(I want to set ranges of values of gr so that if the value obtained falls in a specific category, the point will have a specific colour).
I'm really new to MATLAB. Is there any possible way to make this?
Thanks in advance.
Here is the basic algorithm that I would do:
Determine how many colours you want to represent in your plot.
Create a colour map that has this many points for what you want to compute.
Determine a linearly increasing vector that varies from the minimum value of gr to the maximum value of gr with as many points as you have determined in Step #2
For each point in gr:
a. Determine which point yields the closest distance of this point to the vector in Step #3
b. Use this to index which colour you want.
c. Convert your angle into Cartesian co-ordinates, then plot this point with the colour found in Step 4b.
Let's tackle each point in detail.
Step #1 - Determine how many colours you want
This is pretty simple. Just determine how many colours you want. For now, let's assume that you want 20 colours, so:
num_colours = 20;
Step #2 - Create a colour map
What we can do is create a 20 x 3 matrix where each row determines a RGB tuple that denotes the amount of red, green and blue that each colour will occupy. MATLAB has built-in colour maps that will help you facilitate this. Here are all of the available colour maps that MATLAB has:
Each colour map has a special variable where you can provide it an integer number, and it'll return this 2D matrix of as many rows as the number you have provided. Each row gives you an RGB triplet which denotes the proportion of red, green and blue respectively. This matrix varies from the beginning of the colour map (top row) to the end (bottom row). All you have to do is use any name seen in the figure I've shown you above to create a colour map of that type. For example, if you wanted to get a bones colour map of 15 points, simply do:
colour_map = bones(15);
If you wanted to get a jet colour map of 25 points, simply do:
colour_map = jet(25);
.... you get the idea right? I like hsv so let's use the HSV colour map. You can use any colour map you want, but let's just stick with HSV for the sake of this example.
As such:
colour_map = hsv(num_colours);
Step #3 - Get that linearly increasing vector
You want certain colours to map into certain ranges, which is why this step is important. Given a value in gr, we want to figure out which colour we want to choose, and all you have to do is determine which value in gr is the closest to a value in this vector in Step #3. Therefore, you can use linspace to do this for you:
bin_vector = linspace(min(gr), max(gr), num_colours);
This will create a num_colours 1D array where the beginning of this array starts at the minimum value of gr and varies up to the maximum value of gr and each value is equally spaced such that we generate a num_colours array.
Step #4 - Bring it all home
Now, for each point in gr, we need to figure out which point is the closest to that vector in Step #3, we then use this to figure out the colour we want, then we need to convert our angle into Cartesian co-ordinates, then plot this point.
For illustration purposes, I'm going to assume your radius is 1. You can figure out how to get the x and y co-ordinates by simply doing cos(theta) and sin(theta), where theta is the angle you are examining. Since your gr array has 360 slots, I'm going to assume a resolution of 1 degree per slot. Therefore, you can easily do this in a for loop. Make sure you use hold on because we are going to call plot multiple times, and we don't want to overwrite the plot each time we call plot. You want all of the points to stay in the plot.
Without further ado:
figure; %// Create blank figure
hold on; %// Remember all points
%// For each point in our array...
for idx = 1 : 360
%// Find the closest slot between gr and our vector in Step #3
[~,min_idx] = min(abs(gr(idx) - bin_vector));
%// Grab this colour
clr = colour_map(min_idx,:);
%// Plot the point with this colour
plot(cosd(idx), sind(idx), '.', 'Color', clr, 'MarkerSize', 10);
end
Take notice that cosd and sind take in degrees as the input argument while cos and sin take in radians. Also, take note that I also changed the size of the point so that it's bigger. With the above logic, and your array in gr, this is what I get:
If you want the radius to get larger, all you have to do is multiply each cosd and sind term with your radius. Therefore, you can do something like this:
radius = 2;
for idx = 1 : 360
... %// Insert colour code here
...
...
%// Now plot
plot(radius*cosd(idx), radius*sind(idx), '.', 'Color', clr, 'MarkerSize', 10);
end
Just leave the code the same, but for the plot command, just multiply each x and y value by the radius.
Minor note in efficiency
The way you're calculating your gr array is using an inefficient for loop. There are some situations (like mine above) where you need to use a for loop, but for simple computations there is no need. It's better if you vectorize its creation. Therefore, you can get rid of the for loop to calculate your gr array like so:
x = 1 : 360;
Theta = x*pi/180;
Phii = r*w*w*sin(Theta).*sin(Theta);
Vi = -G*M/(r*r);
gr = Vi + Phii;
x is simply a vector going from 1 to 360, and that's done in the first line. Also, Vi is just an array which contains a single value and if you know how operations work between a scalar and an array, you can just do an addition with this single value and it'll add every value in your array by this much. As such, there's no need to create an array for Vi. Also, take a look at how I calculated Phii. I'm using element-by-element operations as Theta is now an array. You want to create an array Phii that takes corresponding values of Theta, and applies that formula to each value in Theta to produce Phii.
Hope this helps. Good luck!

Contouring a mesh and assigning magnitude arrows in Matlab

I want to assign vector to a contourf graph, in order to show the direction and magnitude of wind.
For this I am using contourf(A) and quiver(x,y), where as A is a matrix 151x401 and x,y are matrices with the same sizes (151x401) with magnitude and direction respectively.
When I am using large maps i get the position of the arrows but they are to densily placed and that makes the graph look bad.
The final graph has the arrows as desired, but they are to many of them and too close, I would like them to be more scarce and distributed with more gap between them, so as to be able to increase their length and at the same time have the components of the contour map visible.
Can anyone help , any pointers would be helpful
i know its been a long time since the question was asked, but i think i found a way to make it work.
I attach the code in case someone encounters the same issues
[nx,ny]= size(A) % A is the matrix used as base
xx=1:1:ny; % set the x-axis to be equal to the y
yy=1:1:nx; % set the y-axis to be equal to the x
contourf(xx,yy,A)
hold on, delta = 8; %delta is the distance between arrows)
quiver(xx(1:delta:end),yy(1:delta:end),B(1:delta:end,1:delta:end),C(1:delta:end,1:delta:end),1) % the 1 at the end is the size of the arrows
set(gca,'fontsize',12);, hold off
A,B,C are the corresponding matrices ones want to use

Matlab Solid Circles

What we want is to draw several solid circles at random locations, with random gray scale colors, on a dark gray background. How can we do this? Also, if the circles overlap, we need them to change color in the overlapping part.
Since this is an assignment for school, we are not looking for ready-made answers, but for a guide which tools to use in MATLAB!
Here's a checklist of things I would investigate if you want to do this properly:
Figure out how to draw circles in MATLAB. Because you don't have the Image Processing Toolbox (see comments), you will probably have to make a function yourself. I'll give you some starter code:
function [xout, yout] = circle(x,y,r,rows,cols)
[X,Y] = meshgrid(x-r:x+r, y-r:y+r);
ind = find(X.^2 + Y.^2 <= r^2 & X >= 1 & X <= cols & Y >= 1 & Y <= rows);
xout = X(ind);
yout = Y(ind);
end
What the above function does is that it takes in an (x,y) co-ordinate as well as the radius of
the circle. You also will need to specify how many rows and how many columns you want in your image. The reason why is because this function will prevent giving you co-ordinates that are out of bounds in the image that you can't draw. The final output of this will give you co-ordinates of all values inside and along the boundary of the circle. These co-ordinates will already be in integer so there's no need for any rounding and such things. In addition, these will perfectly fit when you're assigning these co-ordinates to locations in your image. One caveat to note is that the co-ordinates assume an inverted Cartesian. This means that the top left corner is the origin (0,0). x values increase from left to right, and y values increase from top to bottom. You'll need to keep this convention in mind when drawing circles in your image.
Take a look at the rand class of functions. rand will generate random values for you and so you can use these to generate a random set of co-ordinates - each of these co-ordinates can thus serve as your centre. In addition, you can use this class of functions to help you figure out how big you want your circles and also what shade of gray you want your circles to be.
Take a look at set operations (logical AND, logical OR) etc. You can use a logical AND to find any circles that are intersecting with each other. When you find these areas, you can fill each of these areas with a different shade of gray. Again, the rand functions will also be of use here.
As such, here is a (possible) algorithm to help you do this:
Take a matrix of whatever size you want, and initialize all of the elements to dark gray. Perhaps an intensity of 32 may work.
Generate a random set of (x,y) co-ordinates, a random set of radii and a random set of intensity values for each circle.
For each pair of circles, check to see if there are any co-ordinates that intersect with each other. If there are such co-ordinates, generate a random shade of gray and fill in these co-ordinates with this new shade of gray. A possible way to do this would be to take each set of co-ordinates of the two circles and draw them on separate temporary images. You would then use the logical AND operator to find where the circles intersect.
Now that you have your circles, you can plot them all. Take a look at how plot works with plotting matrices. That way you don't have to loop through all of the circles as it'll be inefficient.
Good luck!
Let's get you home, shall we? Now this stays away from the Image Processing Toolbox functions, so hopefully these must work for you too.
Code
%%// Paramters
numc = 5;
graph_size = [300 300];
max_r = 100;
r_arr = randperm(max_r/2,numc)+max_r/2
cpts = [randperm(graph_size(1)-max_r,numc)' randperm(graph_size(2)-max_r,numc)']
color1 = randperm(155,numc)+100
prev = zeros(graph_size(1),graph_size(2));
for k = 1:numc
r = r_arr(k);
curr = zeros(graph_size(1),graph_size(2));
curr(cpts(k,1):cpts(k,1)+r-1,cpts(k,2):cpts(k,2)+r-1)= color1(k)*imcircle(r);
common_blob = prev & curr;
curr = prev + curr;
curr(common_blob) = min(color1(1),color1(2))-50;
prev = curr;
end
figure,imagesc(curr), colormap gray
%// Please note that the code uses a MATLAB file-exchange tool called
%// imcircle, which is available at -
%// http://www.mathworks.com/matlabcentral/fileexchange/128-imcircle
Screenshot of a sample run
As you said that your problem is an assignment for school I will therefore not tell you exactly how to do it but what you should look at.
you should be familiar how 2d arrays (matrices) work and how to plot them using image/imagesc/imshow ;
you should look at the strel function ;
you should look at the rand/randn function;
such concepts should be enough for the assignment.

Dividing a geographic region

I have a certain geographic region defined by the bottom left and top right coordinates. How can I divide this region into areas of 20x20km. I mean in practial the shape of the earth is not flat it's round. The bounding box is just an approximation. It's not even rectangular in actual sense. It's just an assumption. Lets say the bottomleft coordinate is given by x1,y1 and the topright coordinate is given by x2,y2, the length of x1 to x2 at y1 is different than that of the length between x1 to x2 at y2. How can I overcome this issue
Actually, I have to create a spatial meshgrid for this region using matlab's meshgrid function. So that the grids are of area 20x20km.
meshgrid(x1:deltaY:x2,y1:deltaX:y2)
As you can see I can have only one deltaX and one deltaY. I want to choose deltaX and deltaY such that the increments create grid of size 20x20km. However this deltaX and deltaY are supposed to vary based upon the location. Any suggestions?
I mean lets say deltaX=del1. Then distance between points (x1,y1) to (x1,y1+del1) is 20km. BUt when I measure the distance between points (x2,y1) to (x2, y1_del1) the distance is < 20km. The meshgrid function above does creates mesh. But the distances are not consistent. Any ideas how to overcome this issue?
Bear in mind that 20km on the surface of the earth is a REALLY short distance, about .01 radians - so the area you're looking at would be approximated as flat for anything non-scientific. Assuming it is scientific...
To get something other than monotonic steps in meshgrid you should create a function which takes as its input your desired (x,y) and maps it relative to (x_0,y_0) and (x_max,y_max) in your units of choice. Here's an inline function demonstrating the idea of using a function for meshgrid steps
step=inline('log10(x)');
[x,y]=meshgrid(step(1:10),step(1:10));
image(255*x.*y)
colormap(gray(255))
So how do you determine what the function should be? That's hard for us to answer exactly without a little more information about what your data set looks like, how you're interacting with it, and what your accuracy requirements are. If you have access to the actual location at every point, you should vary one dimension at a time (if your data grid is aligned with your latitude grid, for example) and use a curve fit with model selection techniques (akaike/bayes criterion) to find the best function for your data.

Matlab - Propagate points orthogonally on to the edge of shape boundaries

I have a set of points which I want to propagate on to the edge of shape boundary defined by a binary image. The shape boundary is defined by a 1px wide white edge.
I have the coordinates of these points stored in a 2 row by n column matrix. The shape forms a concave boundary with no holes within itself made of around 2500 points. I have approximately 80 to 150 points that I wish to propagate on the shape boundary.
I want to cast a ray from each point from the set of points in an orthogonal direction and detect at which point it intersects the shape boundary at. The orthogonal direction has already been determined. For the required purposes it is calculated taking the normal of the contour calculated for point, using point-1 and point+1.
What would be the best method to do this?
Are there some sort of ray tracing algorithms that could be used?
Thank you very much in advance for any help!
EDIT: I have tried to make the question much clearer and added a image describing the problem. In the image the grey line represents the shape contour, the red dots the points
I want to propagate and the green line an imaginary orthongally cast ray.
alt text http://img504.imageshack.us/img504/3107/orth.png
ANOTHER EDIT: For clarification I have posted the code used to calculate the normals for each point. Where the xt and yt are vectors storing the coordinates for each point. After calculating the normal value it can be propagated by using the linspace function and the requested length of the orthogonal line.
%#derivaties of contour
dx=[xt(2)-xt(1) (xt(3:end)-xt(1:end-2))/2 xt(end)-xt(end-1)];
dy=[yt(2)-yt(1) (yt(3:end)-yt(1:end-2))/2 yt(end)-yt(end-1)];
%#normals of contourpoints
l=sqrt(dx.^2+dy.^2);
nx = -dy./l;
ny = dx./l;
normals = [nx,ny];
It depends on how many unit vectors you want to test against one shape. If you have one shape and many tests, the easiest thing to do is probably to convert your shape coordinates to polar coordinates which implicitly represent your solution already. This may not be a very effective solution however if you have different shapes and only a few tests for every shape.
Update based on the edited question:
If the rays can start from arbitrary points, not only from the origin, you have to test against all the points. This can be done easily by transforming your shape boundary such that your ray to test starts in the origin in either coordinate direction (positive x in my example code)
% vector of shape boundary points (assumed to be image coordinates, i.e. integers)
shapeBoundary = [xs, ys];
% define the start point and direction you want to test
startPoint = [xsp, ysp];
testVector = unit([xv, yv]);
% now transform the shape boundary
shapeBoundaryTrans(:,1) = shapeBoundary(:,1)-startPoint(1);
shapeBoundaryTrans(:,2) = shapeBoundary(:,2)-startPoint(2);
rotMatrix = [testVector(2), testVector(1); ...
testVector(-1), testVector(2)];
% somewhat strange transformation to keep it vectorized
shapeBoundaryTrans = shapeBoundaryTrans * rotMatrix';
% now the test is easy: find the points close to the positive x-axis
selector = (abs(shapeBoundaryTrans(:,2)) < 0.5) & (shapeBoundaryTrans(:,1) > 0);
shapeBoundaryTrans(:,2) = 1:size(shapeBoundaryTrans, 1)';
shapeBoundaryReduced = shapeBoundaryTrans(selector, :);
if (isempty(shapeBoundaryReduced))
[dummy, idx] = min(shapeBoundaryReduced(:, 1));
collIdx = shapeBoundaryReduced(idx, 2);
% you have a collision with point collIdx of your shapeBoundary
else
% no collision
end
This could be done in a nicer way probably, but you get the idea...
If I understand your problem correctly (project each point onto the closest point of the shape boundary), you can
use sub2ind to convert the "2 row by n column matrix" description to a BW image with white pixels, something like
myimage=zeros(imagesize);
myimage(imagesize, x_coords, y_coords) = 1
use imfill to fill the outside of the boundary
run [D,L] = bwdist(BW) on the resulting image, and just read the answers from L.
Should be fairly straightforward.