Changing parameters within function for use with ODE solver - matlab

Is is it possible to use an ODE solver, such as ode45, and still be able to 'change' values for the parameters within the called function?
For example, if I were to use the following function:
function y = thisode(t, Ic)
% example derivative function
% parameters
a = .05;
b = .005;
c = .0005;
d = .00005;
% state variables
R = Ic(1);
T = Ic(2);
y = [(R*a)-(T/b)+d; (d*R)-(c*T)];
with this script:
clear all
% Initial conditions
It = [0.06 0.010];
% time steps
time = 0:.5:10;
% ODE solver
[t,Ic1] = ode45(#thisode, time, It);
everything works as I would expect. However, I would like a way to easily change the parameter values, but still run multiple iterations of the ODE solver with just one function and one script. However, it does not seem like I can just add more terms to the ODE solver, for example:
function y = thisode(t, Ic, P)
% parameters
a = P(1);
b = P(2);
c = P(3);
d = P(4);
% state variables
R = Ic(1);
T = Ic(2);
y = [(R*a)-(T/b)+d; (d*R)-(c*T)];
with this script:
clear all
% Initial conditions
It = [0.06 0.010];
P1 = [.05 .005 .0005 .00005]
% time steps
time = 0:.5:10;
% ODE solver
[t,Ic1] = ode45(#thisode, time, It, [], P1);
does not work. I guess I know this shouldn't work, but I have been unable to come up with a solution. I was also considering an if statement within the function and then hard coding several sets of parameters based to be used (e.g use set 1 when P == 1, set 2 when P == 2, etc) but this also did not work as I don't where to call the set to be used with an ODE. Any tips or suggestion on how to use one function and one script with an ODE solver while being able to change parameter values would be much appreciated.
Thank you,
Mike

You'll have to call the function differently:
[t,Ic1] = ode45(#(t,y) thisode(t,y,P1), time, It);
The function ode45 assumes all functions passed to it accept only an t and a y. The above call is a standard trick to get Matlab to pass P1, while ode45 will pass it t and y on every call.

Related

MATLAB function handles and parameters

When I type help gmres in MATLAB I get the following example:
n = 21; A = gallery('wilk',n); b = sum(A,2);
tol = 1e-12; maxit = 15;
x1 = gmres(#(x)afun(x,n),b,10,tol,maxit,#(x)mfun(x,n));
where the two functions are:
function y = afun(x,n)
y = [0; x(1:n-1)] + [((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x+[x(2:n); 0];
end
and
function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];
end
I tested it and it works great. My question is in both those functions what is the value for x since we never give it one?
Also shouldn't the call to gmres be written like this: (y in the #handle)
x1 = gmres(#(y)afun(x,n),b,10,tol,maxit,#(y)mfun(x,n));
Function handles are one way to parametrize functions in MATLAB. From the documentation page, we find the following example:
b = 2;
c = 3.5;
cubicpoly = #(x) x^3 + b*x + c;
x = fzero(cubicpoly,0)
which results in:
x =
-1.0945
So what's happening here? fzero is a so-called function function, that takes function handles as inputs, and performs operations on them -- in this case, finds the root of the given function. Practically, this means that fzero decides which values for the input argument x to cubicpoly to try in order to find the root. This means the user just provides a function - no need to give the inputs - and fzero will query the function with different values for x to eventually find the root.
The function you ask about, gmres, operates in a similar manner. What this means is that you merely need to provide a function that takes an appropriate number of input arguments, and gmres will take care of calling it with appropriate inputs to produce its output.
Finally, let's consider your suggestion of calling gmres as follows:
x1 = gmres(#(y)afun(x,n),b,10,tol,maxit,#(y)mfun(x,n));
This might work, or then again it might not -- it depends whether you have a variable called x in the workspace of the function eventually calling either afun or mfun. Notice that now the function handles take one input, y, but its value is nowhere used in the expression of the function defined. This means it will not have any effect on the output.
Consider the following example to illustrate what happens:
f = #(y)2*x+1; % define a function handle
f(1) % error! Undefined function or variable 'x'!
% the following this works, and g will now use x from the workspace
x = 42;
g = #(y)2*x+1; % define a function handle that knows about x
g(1)
g(2)
g(3) % ...but the result will be independent of y as it's not used.

Quickly Evaluating MANY matlabFunctions

This post builds on my post about quickly evaluating analytic Jacobian in Matlab:
fast evaluation of analytical jacobian in MATLAB
The key difference is that now, I am working with the Hessian and I have to evaluate close to 700 matlabFunctions (instead of 1 matlabFunction, like I did for the Jacobian) each time the hessian is evaluated. So there is an opportunity to do things a little differently.
I have tried to do this two ways so far and I am thinking about implementing a third and was wondering if anyone has any other suggestions. I will go through each method with a toy example, but first some preprocessing to generate these matlabFunctions:
PreProcessing:
% This part of the code is calculated once, it is not the issue
dvs = 5;
X=sym('X',[dvs,1]);
num = dvs - 1; % number of constraints
% multiple functions
for k = 1:num
f1(X(k+1),X(k)) = (X(k+1)^3 - X(k)^2*k^2);
c(k) = f1;
end
gradc = jacobian(c,X).'; % .' performs transpose
parfor k = 1:num
hessc{k} = jacobian(gradc(:,k),X);
end
parfor k = 1:num
hess_name = strcat('hessian_',num2str(k));
matlabFunction(hessc{k},'file',hess_name,'vars',X);
end
METHOD #1 : Evaluate functions in series
%% Now we use the functions to run an "optimization." Just for an example the "optimization" is just a for loop
fprintf('This is test A, where the functions are evaluated in series!\n');
tic
for q = 1:10
x_dv = rand(dvs,1); % these are the design variables
lambda = rand(num,1); % these are the lagrange multipliers
x_dv_cell = num2cell(x_dv); % for passing large design variables
for k = 1:num
hess_name = strcat('hessian_',num2str(k));
function_handle = str2func(hess_name);
H_temp(:,:,k) = lambda(k)*function_handle(x_dv_cell{:});
end
H = sum(H_temp,3);
end
fprintf('The time for test A was:\n')
toc
METHOD # 2: Evaluate functions in parallel
%% Try to run a parfor loop
fprintf('This is test B, where the functions are evaluated in parallel!\n');
tic
for q = 1:10
x_dv = rand(dvs,1); % these are the design variables
lambda = rand(num,1); % these are the lagrange multipliers
x_dv_cell = num2cell(x_dv); % for passing large design variables
parfor k = 1:num
hess_name = strcat('hessian_',num2str(k));
function_handle = str2func(hess_name);
H_temp(:,:,k) = lambda(k)*function_handle(x_dv_cell{:});
end
H = sum(H_temp,3);
end
fprintf('The time for test B was:\n')
toc
RESULTS:
METHOD #1 = 0.008691 seconds
METHOD #2 = 0.464786 seconds
DISCUSSION of RESULTS
This result makes sense because, the functions evaluate very quickly and running them in parallel waists a lot of time setting up and sending out the jobs to the different Matlabs ( and then getting the data back from them). I see the same result on my actual problem.
METHOD # 3: Evaluating the functions using the GPU
I have not tried this yet, but I am interested to see what the performance difference is. I am not yet familiar with doing this in Matlab and will add it once I am done.
Any other thoughts? Comments? Thanks!

ODE 15s with time dependent input parameters

I have a MATLAB code that solves a large scale ODE system of following type
function [F] = myfun(t,C,u)
u here is a time dependent vector used as a input in the function myfun. My current code reads as:-
u = zeros(4,1);
u(1) = 0.1;
u(2) = 0.1;
u(3) = 5.01/36;
u(4) = 0.1;
C0 = zeros(15*4*20+12,1);
options = odeset('Mass',Mf,'RelTol',1e-5,'AbsTol',1e-5);
[T,C] = ode15s(#OCFDonecolumnA, [0,5000] ,C0,options,u);
I would like to have the entire time domain split into 5 different sections and have the elements of u take different values at different times(something like a multiple step function). what would be the best way to code it considering that I later want to solve a optimization problem to determine values of u for each time interval in the domain [0,5000].
Thanks
ode15s expects your model function to accept a parameter t for time and a vector x (or C as you named it) of differential state variables. Since ode15s will not let us pass in another vector u of control inputs, I usually wrap the ODE function ffcn inside a model function:
function [t, x] = model(x0, t_seg, u)
idx_seg = 0;
function y = ffcn(t, x)
% simple example of exponential growth
y(1) = u(idx_seg) * x(1)
end
...
end
In the above, the parameters of model are the initial state values x0, the vector of switching times t_seg, and the vector u of control input values in different segments. You can see that idx_seg is visible from within ffcn. This allows us to integrate the model over all segments (replace ... in the above with the following):
t_start = 0;
t = t_start;
x = x0;
while idx_seg < length(t_seg)
idx_seg = idx_seg + 1;
t_end = t_seg(idx_seg);
[t_sol, x_sol] = ode15s(#ffcn, [t_start, t_end], x(end, :));
t = [t; t_sol(2 : end)];
x = [x; x_sol(2 : end, :)];
t_start = t_end;
end
In the first iteration of the loop, t_start is 0 and t_end is the first switching point. We use ode15s now to only integrate over this interval, and our ffcn evaluates the ODE with u(1). The solution y_sol and the corresponding time points t_sol are appended to our overall solution (t, x).
For the next iteration, we set t_start to the end of the current segment and set the new t_end to the next switching point. You can also see that the last element of t_seg must be the time at which the simulation ends. Importantly, we pass to ode15s the current tail y(end, :) of the simulated trajectory as the initial state vector of the next segment.
In summary, the function model will use ode15s to simulate the model segment by segment and return the overall trajectory y and its time points t. You could convince yourself with an example like
[t, x] = model1(1, [4, 6, 12], [0.4, -0.7, 0.3]);
plot(t, x);
which for my exponential growth example should yield
For your optimization runs, you will need to write an objective function. This objective function can pass u to model, and then calculate the merit associated with u by looking at x.

Determining convergence rate of fsolve - Matlab

Suppose I'm solving a system of nonlinear equations. A simple example would be:
function example
x0 = [15; -2];
options = optimoptions('fsolve','Display','iter','TolFun',eps,'TolX',eps);
[x,fval,exitflag,output] = fsolve(#P1a,x0,options);
end
function f1 = P1a(x)
f1 = [x(1)+x(2)*(x(2)*(5-x(2))-2)- 13; x(1)+x(2)*(x(2)*(1+x(2))-14)-29];
end
How do I determine the rate of convergence? 'Display','iter' shows me the norm at each step, but I can't find a way to extract these values. (For this particular example, I believe fsolve does not converge to the right solution, but rather to a local minimum. That is not the issue, however. I just want to find a way to estimate the convergence rate.)
You can get plenty out of fsolve. However, you'll need to do some work. Read up on the 'OutputFcn' option and writing output functions for Matlab's Optimization methods. This is vary similar to the option of the same name used by Matlab's ODE solvers. Here's an example that replicates the 'Display','iter' option-value for fsolve (for the default 'trust-region-dogleg' algorithm specifically):
function stop = outfun(x,optimValues,state)
% See private/trustnleqn
stop = false;
switch state
case 'init'
header = sprintf(['\n Norm of First-order Trust-region\n',...
' Iteration Func-count f(x) step optimality radius']);
disp(header);
case 'iter'
iter = optimValues.iteration; % Iteration
numFevals = optimValues.funccount; % Func-count
F = optimValues.fval; % f(x)
normd = optimValues.stepsize; % Norm of step
normgradinf = optimValues.firstorderopt; % First-order optimality
Delta = optimValues.trustregionradius; % Trust-region radius
if iter > 0
formatstr = ' %5.0f %5.0f %13.6g %13.6g %12.3g %12.3g';
iterOutput = sprintf(formatstr,iter,numFevals,F'*F,normd,normgradinf,Delta);
else
formatstr0 = ' %5.0f %5.0f %13.6g %12.3g %12.3g';
iterOutput = sprintf(formatstr0,iter,numFevals,F'*F,normgradinf,Delta);
end
disp(iterOutput);
case 'done'
otherwise
end
You can then call this via:
function example
P1a=#(x)[x(1)+x(2)*(x(2)*(5-x(2))-2)- 13; x(1)+x(2)*(x(2)*(1+x(2))-14)-29];
x0 = [15; -2];
opts = optimoptions('fsolve','Display','off','OutputFcn',#outfun,'TolFun',eps,'TolX',eps);
[x,fval,exitflag,output] = fsolve(P1a,x0,opts);
This still just prints to the Command Window. From here it's a matter of creating an output function that can write data to an array, file, or other data structure. Here's how you might do that with a global variable (in general, not a good idea):
function stop = outfun2(x,optimValues,state)
stop = false;
global out; % Global variable, define in main function too
switch state
case 'init'
out = [];
case 'iter'
iter = optimValues.iteration; % Iteration
numFevals = optimValues.funccount; % Func-count
F = optimValues.fval; % f(x)
normd = optimValues.stepsize; % Norm of step
normgradinf = optimValues.firstorderopt; % First-order optimality
Delta = optimValues.trustregionradius; % Trust-region radius
out = [out;iter numFevals F'*F normd normgradinf Delta];
case 'done'
otherwise
end
Then just declare global out; in your main function before calling fsolve. You could also accomplish this by making your output function a nested function, in which case the out array would be shared with the outer main function.
The second output function example performs dynamic memory allocation instead of reallocating the entire out array. There's no way around this because both we and the algorithm don't know how many iterations it will take to converge. However, for a few hundred iterations, dynamic memory allocation will be plenty fast.
I'll leave "determining the rate of convergence" to you now that you have the tools in hand...

solving nonlinear equations

I want to solve two nonlinear equations in MATLAB so i did the following:
part of my script
c=[A\u;A\v];
% parts of code are omitted.
x0=[1;1];
sol= fsolve(#myfunc,x0);
the myfunc function is as follows
function F = myfunc(x)
F=[ x(1)*c(1)+x(2)*c(2)+x(1)*x(2)*c(3)+c(4)-ii;
x(1)*c(5)+x(2)*c(6)+x(1)*x(2)*c(7)+c(8)-jj];
end
i have two unknowns x(1) and x(2)
my question is How to pass a values(c,ii,jj) to myfunc in every time i call it?
or how to overcome this error Undefined function or method 'c' for input arguments of type 'double'.
thanks
Edit: The previous answer was bogus and not contributing at all. Hence has been deleted. Here is the right way.
In your main code create a vector of the coefficients c,ii,jj and a dummy function handle f_d
coeffs = [c,ii,jj];
f_d = #(x0) myfunc(x0,coeffs); % f_d considers x0 as variables
sol = fsolve(f_d,x0);
Make your function myfunc capable of taking in 2 variables, x0 and coeffs
function F = myfunc(x, coeffs)
c = coeffs(1:end-2);
ii = coeffs(end-1);
jj = coeffs(end);
F(1) = x(1)*c(1)+x(2)*c(2)+x(1)*x(2)*c(3)+c(4)-ii;
F(2) = x(1)*c(5)+x(2)*c(6)+x(1)*x(2)*c(7)+c(8)-jj;
I think that should solve for x0(1) and x0(2).
Edit: Thank you Eitan_T. Changes have been made above.
There is an alternative option, that I prefer, if a function handle is not what you are looking for.
Say I have this function:
function y = i_have_a_root( x, a )
y = a*x^2;
end
You can pass in your initial guess for x and a value for a by just calling fsolve like so:
a = 5;
x0 = 0;
root = fsolve('i_have_a_root',x0,[],a);
Note: The [] is reserved for fsolve options, which you probably want to use. See the second call to fsolve in the documentation here for information on the options argument.