I am trying to test a repository that uses DbContext
The issue I am running into is that DbCOntext wants to return DbSet for certain types
I can't even mock IDbSet as it has a PRIVATE CTOR?!?!?!
How is everyone getting over this?
You need to make use of an adapter or wrapper. The DbContext is third party code. Your code should hide this behind an abstraction, remember this is just an implementation detail about how the internals of your system works. You should be free to change this at any time.
public class ThatsHardToTest
{
// Private constructors, slow start up time etc...
public int AlwaysReturnOneExceptInSuperRareScnearios()
{
// Complex logic.
return 1;
}
}
Now if we want to test our code when the above method goes wrong, e.g database system is offline. I don't want the test to hit the database, so we need an adapter around this third party code. I would either make an interface or base class.
public class MyTestAdapter : IExampleAdapter
{
public int ReturnWhateverIWant()
{
return -1;
}
}
I would use MyTestAdapter for unit testing my code, as I can control what it does. For the production code you simply substitute this with an adapter which delegates to the real production system. For example:
public class MyRealAdapter : IExampleAdapter
{
public int ReturnWhateverIWant()
{
return new ThatsHardToTest().AlwaysReturnOneExceptInSuperRareScnearios();
}
}
Related
I'm used to working the database connections where you connect/open/close as fast as possible in each method. I'm now working with the Entity Framework and so my methods all do this type of thing:
using (var context = new FooEntities()) {
// linq to sql query here
}
I've been told that with Entity Framework I can actually have that context variable be a class level variable and not have to instantiate it in each method. Is that really the case, or should I continue this pattern in each method?
I'm using version 5.0.0 of the framework if that makes a difference.
It depends on how you are expecting it to act. The only reason you'd want it to stick around is if you wanted to use the caching feature of DbContext across multiple method calls. But since its pulling connections from the Pool anyway, disposing of a DbContext shouldn't really impact performance when creating a new one.
For me personally, I create the context as close as possible and kill it as soon as possible. Thus, the Get calls should use AsNoTracking() to speed up the calls a lot if you don't care about trying to update them later. You could also create a DbContextFactory so each class could control that interaction as it sees fit. (i.e. Method A always creates a new one, but Methods B and C could share if either one called first). Though, that could cause its own issues down the road, but then you can opt into those conditions.
You can have Context as a property of a class, but you have to consider how to control the disposing of the Context. For example:
public class UnitOfWork:IDisposable
{
public DbContext Context { get; set; }
public UnitOfWork()
{
Context = null; //initialize context here
}
public void DoWorkWithContext1()
{
//anything you need
}
public void DoWorkWithContext2()
{
//anything you need
}
public void Dispose()
{
if (Context != null)
Context.Dispose();
}
}
Then you'll use the class in this way:
using (var unit= new UnitOfWork())
{
unit.DoWorkWithContext1();
unit.DoWorkWithContext2();
}
This is more a solution / work around than an actual question. I'm posting it here since I couldn't find this solution on stack overflow or indeed after a lot of Googling.
The Problem:
I have an MVC 3 webapp using EF 4 code first that I want to write unit tests for. I'm also using NCrunch to run the unit tests on the fly as I code, so I'd like to avoid backing onto an actual database here.
Other Solutions:
IDataContext
I've found this the most accepted way to create an in memory datacontext. It effectively involves writing an interface IMyDataContext for your MyDataContext and then using the interface in all your controllers. An example of doing this is here.
This is the route I went with initially and I even went as far as writing a T4 template to extract IMyDataContext from MyDataContext since I don't like having to maintain duplicate dependent code.
However I quickly discovered that some Linq statements fail in production when using IMyDataContext instead of MyDataContext. Specifically queries like this throw a NotSupportedException
var siteList = from iSite in MyDataContext.Sites
let iMaxPageImpression = (from iPage in MyDataContext.Pages where iSite.SiteId == iPage.SiteId select iPage.AvgMonthlyImpressions).Max()
select new { Site = iSite, MaxImpressions = iMaxPageImpression };
My Solution
This was actually quite simple. I simply created a MyInMemoryDataContext subclass to MyDataContext and overrode all the IDbSet<..> properties as below:
public class InMemoryDataContext : MyDataContext, IObjectContextAdapter
{
/// <summary>Whether SaveChanges() was called on the DataContext</summary>
public bool SaveChangesWasCalled { get; private set; }
public InMemoryDataContext()
{
InitializeDataContextProperties();
SaveChangesWasCalled = false;
}
/// <summary>
/// Initialize all MyDataContext properties with appropriate container types
/// </summary>
private void InitializeDataContextProperties()
{
Type myType = GetType().BaseType; // We have to do this since private Property.Set methods are not accessible through GetType()
// ** Initialize all IDbSet<T> properties with CollectionDbSet<T> instances
var DbSets = myType.GetProperties().Where(x => x.PropertyType.IsGenericType && x.PropertyType.GetGenericTypeDefinition() == typeof(IDbSet<>)).ToList();
foreach (var iDbSetProperty in DbSets)
{
var concreteCollectionType = typeof(CollectionDbSet<>).MakeGenericType(iDbSetProperty.PropertyType.GetGenericArguments());
var collectionInstance = Activator.CreateInstance(concreteCollectionType);
iDbSetProperty.SetValue(this, collectionInstance,null);
}
}
ObjectContext IObjectContextAdapter.ObjectContext
{
get { return null; }
}
public override int SaveChanges()
{
SaveChangesWasCalled = true;
return -1;
}
}
In this case my CollectionDbSet<> is a slightly modified version of FakeDbSet<> here (which simply implements IDbSet with an underlying ObservableCollection and ObservableCollection.AsQueryable()).
This solution works nicely with all my unit tests and specifically with NCrunch running these tests on the fly.
Full Integration Tests
These Unit tests test all the business logic but one major downside is that none of your LINQ statements are guaranteed to work with your actual MyDataContext. This is because testing against an in memory data context means you're replacing the Linq-To-Entity provider but a Linq-To-Objects provider (as pointed out very well in the answer to this SO question).
To fix this I use Ninject within my unit tests and setup InMemoryDataContext to bind instead of MyDataContext within my unit tests. You can then use Ninject to bind to an actual MyDataContext when running the integration tests (via a setting in the app.config).
if(Global.RunIntegrationTest)
DependencyInjector.Bind<MyDataContext>().To<MyDataContext>().InSingletonScope();
else
DependencyInjector.Bind<MyDataContext>().To<InMemoryDataContext>().InSingletonScope();
Let me know if you have any feedback on this however, there are always improvements to be made.
As per my comment in the question, this was more to help others searching for this problem on SO. But as pointed out in the comments underneath the question there are quite a few other design approaches that would fix this problem.
I have read dozens of posts about PROs and CONs of trying to mock \ fake EF in the business logic.
I have not yet decided what to do - but one thing I know is - I have to separate the queries from the business logic.
In this post I saw that Ladislav has answered that there are 2 good ways:
Let them be where they are and use custom extension methods, query views, mapped database views or custom defining queries to define reusable parts.
Expose every single query as method on some separate class. The method
mustn't expose IQueryable and mustn't accept Expression as parameter =
whole query logic must be wrapped in the method. But this will make
your class covering related methods much like repository (the only one
which can be mocked or faked). This implementation is close to
implementation used with stored procedures.
Which method do you think is better any why ?
Are there ANY downsides to put the queries in their own place ? (maybe losing some functionality from EF or something like that)
Do I have to encapsulate even the simplest queries like:
using (MyDbContext entities = new MyDbContext)
{
User user = entities.Users.Find(userId); // ENCAPSULATE THIS ?
// Some BL Code here
}
So I guess your main point is testability of your code, isn't it? In such case you should start by counting responsibilities of the method you want to test and than refactor your code using single responsibility pattern.
Your example code has at least three responsibilities:
Creating an object is a responsibility - context is an object. Moreover it is and object you don't want to use in your unit test so you must move its creation elsewhere.
Executing query is a responsibility. Moreover it is a responsibility you would like to avoid in your unit test.
Doing some business logic is a responsibility
To simplify testing you should refactor your code and divide those responsibilities to separate methods.
public class MyBLClass()
{
public void MyBLMethod(int userId)
{
using (IMyContext entities = GetContext())
{
User user = GetUserFromDb(entities, userId);
// Some BL Code here
}
}
protected virtual IMyContext GetContext()
{
return new MyDbContext();
}
protected virtual User GetUserFromDb(IMyDbContext entities, int userId)
{
return entities.Users.Find(userId);
}
}
Now unit testing business logic should be piece of cake because your unit test can inherit your class and fake context factory method and query execution method and become fully independent on EF.
// NUnit unit test
[TestFixture]
public class MyBLClassTest : MyBLClass
{
private class FakeContext : IMyContext
{
// Create just empty implementation of context interface
}
private User _testUser;
[Test]
public void MyBLMethod_DoSomething()
{
// Test setup
int id = 10;
_testUser = new User
{
Id = id,
// rest is your expected test data - that is what faking is about
// faked method returns simply data your test method expects
};
// Execution of method under test
MyBLMethod(id);
// Test validation
// Assert something you expect to happen on _testUser instance
// inside MyBLMethod
}
protected override IMyContext GetContext()
{
return new FakeContext();
}
protected override User GetUserFromDb(IMyContext context, int userId)
{
return _testUser.Id == userId ? _testUser : null;
}
}
As you add more methods and your application grows you will refactor those query execution methods and context factory method to separate classes to follow single responsibility on classes as well - you will get context factory and either some query provider or in some cases repository (but that repository will never return IQueryable or get Expression as parameter in any of its methods). This will also allow you following DRY principle where your context creation and most commonly used queries will be defined only once on one central place.
So at the end you can have something like this:
public class MyBLClass()
{
private IContextFactory _contextFactory;
private IUserQueryProvider _userProvider;
public MyBLClass(IContextFactory contextFactory, IUserQueryProvider userProvider)
{
_contextFactory = contextFactory;
_userProvider = userProvider;
}
public void MyBLMethod(int userId)
{
using (IMyContext entities = _contextFactory.GetContext())
{
User user = _userProvider.GetSingle(entities, userId);
// Some BL Code here
}
}
}
Where those interfaces will look like:
public interface IContextFactory
{
IMyContext GetContext();
}
public class MyContextFactory : IContextFactory
{
public IMyContext GetContext()
{
// Here belongs any logic necessary to create context
// If you for example want to cache context per HTTP request
// you can implement logic here.
return new MyDbContext();
}
}
and
public interface IUserQueryProvider
{
User GetUser(int userId);
// Any other reusable queries for user entities
// Non of queries returns IQueryable or accepts Expression as parameter
// For example: IEnumerable<User> GetActiveUsers();
}
public class MyUserQueryProvider : IUserQueryProvider
{
public User GetUser(IMyContext context, int userId)
{
return context.Users.Find(userId);
}
// Implementation of other queries
// Only inside query implementations you can use extension methods on IQueryable
}
Your test will now only use fakes for context factory and query provider.
// NUnit + Moq unit test
[TestFixture]
public class MyBLClassTest
{
private class FakeContext : IMyContext
{
// Create just empty implementation of context interface
}
[Test]
public void MyBLMethod_DoSomething()
{
// Test setup
int id = 10;
var user = new User
{
Id = id,
// rest is your expected test data - that is what faking is about
// faked method returns simply data your test method expects
};
var contextFactory = new Mock<IContextFactory>();
contextFactory.Setup(f => f.GetContext()).Returns(new FakeContext());
var queryProvider = new Mock<IUserQueryProvider>();
queryProvider.Setup(f => f.GetUser(It.IsAny<IContextFactory>(), id)).Returns(user);
// Execution of method under test
var myBLClass = new MyBLClass(contextFactory.Object, queryProvider.Object);
myBLClass.MyBLMethod(id);
// Test validation
// Assert something you expect to happen on user instance
// inside MyBLMethod
}
}
It would be little bit different in case of repository which should have reference to context passed to its constructor prior to injecting it to your business class.
Your business class can still define some queries which are never use in any other classes - those queries are most probably part of its logic. You can also use extension methods to define some reusable part of queries but you must always use those extension methods outside of your core business logic which you want to unit test (either in query execution methods or in query provider / repository). That will allow you easy faking query provider or query execution methods.
I saw your previous question and thought about writing a blog post about that topic but the core of my opinion about testing with EF is in this answer.
Edit:
Repository is different topic which doesn't relate to your original question. Specific repository is still valid pattern. We are not against repositories, we are against generic repositories because they don't provide any additional features and don't solve any problem.
The problem is that repository alone doesn't solve anything. There are three patterns which have to be used together to form proper abstraction: Repository, Unit of Work and Specifications. All three are already available in EF: DbSet / ObjectSet as repositories, DbContext / ObjectContext as Unit of works and Linq to Entities as specifications. The main problem with custom implementation of generic repositories mentioned everywhere is that they replace only repository and unit of work with custom implementation but still depend on original specifications => abstraction is incomplete and it is leaking in tests where faked repository behaves in the same way as faked set / context.
The main disadvantage of my query provider is explicit method for any query you will need to execute. In case of repository you will not have such methods you will have just few methods accepting specification (but again those specifications should be defined in DRY principle) which will build query filtering conditions, ordering etc.
public interface IUserRepository
{
User Find(int userId);
IEnumerable<User> FindAll(ISpecification spec);
}
The discussion of this topic is far beyond the scope of this question and it requires you to do some self study.
Btw. mocking and faking has different purpose - you fake a call if you need to get testing data from method in the dependency and you mock the call if you need to assert that method on dependency was called with expected arguments.
I need to modify an existing web app to use Castle.Windsor as IOC container. It was originally developed with StructureMap.
I am stuck with the following problem.
Lets say I have registered a couple of interfaces and their corresponding implementations:
IFoo -> Foo
IBar -> Bar
Calling container.Resolve<IFoo>() or container.Resolve<IBar>() works just fine. This means that the services are registered correctly.
I have a Web Api class with dependencies on other services, such as IFoo
public class BadRequestErrorHandler : HttpErrorHandler
{
// services
public BadRequestErrorHandler(IFoo foo) {...} // has dependency on IFoo
}
In StructureMap I can call:
var test = ObjectFactory.GetInstance<BadRequestErrorHandler>();
this will resolve the IFoo dependency.
Now this does not work with windsor.
How can this be achieved with windsor?
Thanks!
* EDIT *
I was just able to make it work by explicitely registering the BadRequestErrorHandler.
container.Register(Component.For<BadRequestErrorHandler>());
I am just hoping there is a better way to achieve this, that does not involve registering classes that have dependencies. I have a bunch of them...
* EDIT 2 **
To ease the pain, I added a special method to deal with these concrete types.
public T GetInstanceWithAutoRegister<T>()
{
if (container.Kernel.GetHandler(typeof(T)) == null)
{
container.Register(Component.For<T>());
}
return container.Resolve<T>();
}
public object GetInstanceWithAutoRegister(Type pluginType)
{
if (container.Kernel.GetHandler(pluginType) == null)
{
container.Register(Component.For(pluginType));
}
return container.Resolve(pluginType);
}
not ideal, but at least better than having to explicetly register each type. Hope someone has a better solution
You can achieve what you want by registering an ILazyComponentLoader which is a hook that gets called by Windsor as a "last resort" when a component cannot be resolved.
In your case, the implementation would probably look somewhat like this:
public class JustLetWindsorResolveAllConcreteTypes : ILazyComponentLoader
{
public IRegistration Load(string key, Type service)
{
return Component.For(service);
}
}
-and then it should be registered as such:
container.Register(Component.For<ILazyComponentLoader>()
.ImplementedBy<JustLetWindsorResolveAllConcreteTypes>());
You can read more about it in the docs.
I am working in J2EE 5 using JPA, I have a working solution but I'm looking to clean up the structure.
I am using EntityListeners on some of the JPA objects I am persisting, the listeners are fairly generic but depend on the beans implementing an interface, this works great if you remember to add the interface.
I have not been able to determine a way to tie the EntityListener and the Interface together so that I would get an exception that lead in the right direction, or even better a compile time error.
#Entity
#EntityListener({CreateByListener.class})
public class Note implements CreatorInterface{
private String message;....
private String creator;
....
}
public interface CreatorInterface{
public void setCreator(String creator);
}
public class CreateByListener {
#PrePersist
public void dataPersist(CreatorInterface data){
SUser user = LoginModule.getUser();
data.setCreator(user.getName());
}
}
This functions exactly the way I want it to, except when a new class is created and it uses the CreateByListener but does not implement the CreatorInterface.
When this happens a class cast exception is thrown somewhere deep from within the JPA engine and only if I happen to remember this symptom can I figure out what went wrong.
I have not been able to figure a way to require the interface or test for the presence of the interface before the listener would be fired.
Any ideas would be appreciated.
#PrePersist
public void dataPersist(Object data){
if (!(data instanceof CreatorInterface)) {
throw new IllegalArgumentException("The class "
+ data.getClass()
+ " should implement CreatorInterface");
}
CreatorInterface creatorInterface = (CreatorInterface) data;
SUser user = LoginModule.getUser();
creatorInterface.setCreator(user.getName());
}
This does basically the same thing as what you're doing, but at least you'll have a more readable error message indicating what's wrong, instead of the ClassCastException.