automatic lifting of expressions in scala for concurrency - scala

I want to evaluate arguments to any function in parallel transparently (without any source level changes).
For example -
c = f(a, b) should result in:
a and b being evaluated in parallel and then invoking of f.
One way to do this is to convert the above expression to:
a' = future { a }
b' = future { b }
f' = lift f
(so that f: a -> b -> c becomes f: Future<a> -> Future<b> -> Future<c>)
so that c' = f'(a', b')
Is this possible to do in scala?

Assuming that you're OK using Scala 2.10 (not yet released, but up to Release Candidate 2) and are happy to use an experimental feature, this should be pretty easy to achieve with Scala's macro system.

Related

Scala's Partial Functions in Haskell

Scala has a very nice support of partial functions, mainly because in Scala when you define a partial function it also defines an isDefinedAt function for it. And also Scala has orElse and andThen functions to work with partial functions.
Haskell does support partial functions by simply non-exhaustively defining a function (though they are strongly discouraged in Haskell community). But to define isDefinedAt function in general you have to use some sort of exception handling, which I'm not being able to figure out. Once isDefinedAt function is defined then it can be used to define orElse and andThen function is already there as (.).
In short, I want to define a function,
isDefinedAt :: (a -> b) -> a -> Bool
isDefinedAt f x = -- returns True if f is defined at x else False
Can anyone please tell me how such a function can be written.
Note, I can define a function with signature
isDefinedAt :: (a -> b) -> a -> IO Bool
for generic b. But I want a function without IO in co-domain.
A nice article on Scala's Partial Functions is - How to create and use partial functions in Scala By Alvin Alexander
I recommend that, like in Scala, you use a separate type for partial functions.
import Control.Arrow
import Data.Maybe
type Partial = Kleisli Maybe
isDefinedAt :: Partial a b -> a -> Bool
isDefinedAt f x = isJust $ runKleisli f x
-- laziness should save some of the work, if possible
orElse :: Partial a b -> Partial a b -> Partial a b
orElse = (<+>)
andThen :: Partial a b -> Partial b c -> Partial a c
andThen = (>>>)
Your versions of isDefinedAt are not what Scala does (even in signature); it's very possible (though discouraged) for a PartialFunction to throw an exception when isDefinedAt is true. Or, when you define one explicitly (not using a literal), vice versa: apply doesn't have to throw when isDefinedAt is false, it's user responsibility not to call it then. So the direct equivalent would just be
data PartialFunction a b = PartialFunction { apply :: a -> b, isDefinedAt :: a -> Boolean }
which isn't particularly useful.
apply and isDefinedAt are only really linked in Scala for PartialFunction literals which requires compiler support:
A PartialFunction's value receives an additional isDefinedAt member, which is derived from the pattern match in the function literal, with each case's body being replaced by true, and an added default (if none was given) that evaluates to false.
You can emulate this by using Template Haskell, I believe, but I honestly think using the more Haskell-like approach as described in Daniel Wagner's answer is better. As he mentions, laziness helps.
Though it works even better if you make sure runKleisli f x is executed only once; optimizing cases where you have both isDefinedAt and runKleisli requires Common Subexpression Elimination, and the compiler is cautious about doing that, see Under what circumstances could Common Subexpression Elimination affect the laziness of a Haskell program?
You could do something like this (DISCLAIMER: I have not checked the laws of the relevant typeclasses, and the presence of a string in the constructor for the exception in Alternative makes me wonder if it is lawful). Scala's heterogeneous andThen is covered by fmap; its homogeneous andThen / compose are covered by the >>> / <<< from Category; orElse is covered by <|>; lift is runToMaybe.
However, without a deep compiler integration such as exists in Scala, the pattern incompleteness warnings will interact poorly with this. Haskell only has module-level pragmas for these things, and you won't want to just indiscriminately turn them off in any module where you declare inexhaustive functions, or you may get nasty surprises. Depending on your usecase, you may find optics more idiomatic and less problematic; you can have the boilerplate generated for you through Template Haskell.
(Note: I called it Inexhaustive because PartialFunction is something of a misnomer, in that it implies that Function is total. But Scala has no termination or positivity checkers, so the compiler is not actually able to talk about totality; so you get this weird situation where a function that is not a partial function is just a "regular" Function, whereas you should be able to call it a "total Function". The question here is not partially or totality, which is a broader idea, but inexhaustivity of pattern matches.)
{-# LANGUAGE TypeApplications #-}
module Inexhaustive
( Inexhaustive, inexhaustive
, runToMaybe, isDefinedAt
) where
import Prelude hiding ((.), id)
import Control.Applicative
import Control.Exception
import Control.Category
import Data.Maybe
import System.IO.Unsafe (unsafePerformIO)
newtype Inexhaustive a b = Inexhaustive (a -> b)
inexhaustive :: (a -> b) -> Inexhaustive a b
inexhaustive = Inexhaustive
runToMaybe :: Inexhaustive a b -> a -> Maybe b
runToMaybe (Inexhaustive f) x =
let io = fmap Just $ evaluate $ f x
in unsafePerformIO $ catch #PatternMatchFail io (\_ -> return Nothing)
isDefinedAt :: Inexhaustive a b -> a -> Bool
isDefinedAt f = isJust . runToMaybe f
instance Functor (Inexhaustive z) where
fmap f (Inexhaustive g) = inexhaustive (f . g)
instance Applicative (Inexhaustive z) where
pure x = inexhaustive (const x)
(Inexhaustive zab) <*> (Inexhaustive za) = Inexhaustive (\z -> zab z $ za z)
instance Alternative (Inexhaustive z) where
empty = inexhaustive (\_ -> throw $ PatternMatchFail "inexhaustive empty")
f <|> g =
inexhaustive $ \x ->
case runToMaybe f x <|> runToMaybe g x of
Just y -> y
instance Category Inexhaustive where
id = inexhaustive id
(Inexhaustive f) . (Inexhaustive g) = Inexhaustive (f . g)

Can I represent non-sequential/parallel execution with Monads?

So I've finally understood why Applicatives are very useful to represent parallel execution, while Monads very useful to represent sequential execution.
That being said, I've also understood that Monads are more powerful than Applicatives, so can I represent the ap function in terms of the bind function?
In other words... can I represent parallel execution with Monads?
The Monad laws have something to say about this:
Furthermore, the Monad and Applicative operations should relate as
follows:
pure = return
(<*>) = ap
Given that ap is defined to compose computations sequentially,
ap mf mx = do
f <- mf
x <- mx
return (f x)
there's only one way to read that law: a type which exposes a monadic interface cannot use Applicative to do parallel computation. You could provide a newtype wrapper for your monad which has a parallel Applicative instance and no Monad instance, but you can't do both at the same time.
In theory, theory and practice are the same, but in practice, they are not. In the real world you do in fact see people bending these rules and interpreting the above law to mean that (<*>) should be morally equivalent to ap, even if it's not exactly equivalent.
The best example of this that I know happens to be the one which directly addresses your question. Haxl is a library implementing a domain-specific language for concurrent IO. The GenHaxl monad's <*> automatically parallelises two computations where possible, whereas its >>= runs them in sequence (because it has to). This clearly goes against the letter of the law, but since Haxl is meant to be used for database reads which don't mutate anything (rather than writes, which do) you can kinda get away with it and the world doesn't explode.
You can implement <*>, and therefore also ap, from Functor and Monad:
class Functor m => Monad m where
join :: m (m a) -> m a
return :: a -> m a
(>>=) :: Monad m => m a -> (a -> m b) -> m b
m >>= f = join $ fmap f m
(<*>) :: Monad m => m (a -> b) -> m a -> m b
fs <*> xs = fs >>= \f -> xs >>= \x -> return (f x)
ap :: Monad m => m (a -> b) -> m a -> m b
ap = (<*>)
This examples hides Haskell's standard Monad definition, and instead defines Monad in terms of join and return, but you can also define join from (>>=); both ways work.
Consider a case: Lets say we have two futures.
val future1 = Future {
//some long running computation
1
}
val future2 = Future {
// some othe long running computation
2
}
future1.flatMap(_ => future2)
In the above case, future1 and future2 run parallelly provided enough threads are there in the execution pool.
We are able to run the futures parallelly. So, what does this mean?
Monads come into picture when there is data dependence between previous and current tasks (monads). But, if there is no data dependence when they can be run parallelly (at least in case of futures).
Now consider a case:
val future1 = Future {
// long running task
1
}
def compute(value: Int) = Future { value + 1}
future1.flatMap(value => compute(value))
Now one future runs after the completion of others. Now execution has to be serial because of data dependency. Second future depends on the value of first future.

What does >>= mean in purescript?

I was reading the purescript wiki and found following section which explains do in terms of >>=.
What does >>= mean?
Do notation
The do keyword introduces simple syntactic sugar for monadic
expressions.
Here is an example, using the monad for the Maybe type:
maybeSum :: Maybe Number -> Maybe Number -> Maybe Number
maybeSum a b = do
n <- a
m <- b
let result = n + m
return result
maybeSum takes two
values of type Maybe Number and returns their sum if neither number is
Nothing.
When using do notation, there must be a corresponding
instance of the Monad type class for the return type. Statements can
have the following form:
a <- x which desugars to x >>= \a -> ...
x which desugars to x >>= \_ -> ... or just x if this is the last statement.
A let binding let a = x. Note the lack of the in keyword.
The example maybeSum desugars to ::
maybeSum a b =
a >>= \n ->
b >>= \m ->
let result = n + m
in return result
>>= is a function, nothing more. It resides in the Prelude module and has type (>>=) :: forall m a b. (Bind m) => m a -> (a -> m b) -> m b, being an alias for the bind function of the Bind type class. You can find the definitions of the Prelude module in this link, found in the Pursuit package index.
This is closely related to the Monad type class in Haskell, which is a bit easier to find resources. There's a famous question on SO about this concept, which is a good starting point if you're looking to improve your knowledge on the bind function (if you're starting on functional programming now, you can skip it for a while).

How to concisely express function iteration?

Is there a concise, idiomatic way how to express function iteration? That is, given a number n and a function f :: a -> a, I'd like to express \x -> f(...(f(x))...) where f is applied n-times.
Of course, I could make my own, recursive function for that, but I'd be interested if there is a way to express it shortly using existing tools or libraries.
So far, I have these ideas:
\n f x -> foldr (const f) x [1..n]
\n -> appEndo . mconcat . replicate n . Endo
but they all use intermediate lists, and aren't very concise.
The shortest one I found so far uses semigroups:
\n f -> appEndo . times1p (n - 1) . Endo,
but it works only for positive numbers (not for 0).
Primarily I'm focused on solutions in Haskell, but I'd be also interested in Scala solutions or even other functional languages.
Because Haskell is influenced by mathematics so much, the definition from the Wikipedia page you've linked to almost directly translates to the language.
Just check this out:
Now in Haskell:
iterateF 0 _ = id
iterateF n f = f . iterateF (n - 1) f
Pretty neat, huh?
So what is this? It's a typical recursion pattern. And how do Haskellers usually treat that? We treat that with folds! So after refactoring we end up with the following translation:
iterateF :: Int -> (a -> a) -> (a -> a)
iterateF n f = foldr (.) id (replicate n f)
or point-free, if you prefer:
iterateF :: Int -> (a -> a) -> (a -> a)
iterateF n = foldr (.) id . replicate n
As you see, there is no notion of the subject function's arguments both in the Wikipedia definition and in the solutions presented here. It is a function on another function, i.e. the subject function is being treated as a value. This is a higher level approach to a problem than implementation involving arguments of the subject function.
Now, concerning your worries about the intermediate lists. From the source code perspective this solution turns out to be very similar to a Scala solution posted by #jmcejuela, but there's a key difference that GHC optimizer throws away the intermediate list entirely, turning the function into a simple recursive loop over the subject function. I don't think it could be optimized any better.
To comfortably inspect the intermediate compiler results for yourself, I recommend to use ghc-core.
In Scala:
Function chain Seq.fill(n)(f)
See scaladoc for Function. Lazy version: Function chain Stream.fill(n)(f)
Although this is not as concise as jmcejuela's answer (which I prefer), there is another way in scala to express such a function without the Function module. It also works when n = 0.
def iterate[T](f: T=>T, n: Int) = (x: T) => (1 to n).foldLeft(x)((res, n) => f(res))
To overcome the creation of a list, one can use explicit recursion, which in reverse requires more static typing.
def iterate[T](f: T=>T, n: Int): T=>T = (x: T) => (if(n == 0) x else iterate(f, n-1)(f(x)))
There is an equivalent solution using pattern matching like the solution in Haskell:
def iterate[T](f: T=>T, n: Int): T=>T = (x: T) => n match {
case 0 => x
case _ => iterate(f, n-1)(f(x))
}
Finally, I prefer the short way of writing it in Caml, where there is no need to define the types of the variables at all.
let iterate f n x = match n with 0->x | n->iterate f (n-1) x;;
let f5 = iterate f 5 in ...
I like pigworker's/tauli's ideas the best, but since they only gave it as a comments, I'm making a CW answer out of it.
\n f x -> iterate f x !! n
or
\n f -> (!! n) . iterate f
perhaps even:
\n -> ((!! n) .) . iterate

How can I write f(g(h(x))) in Scala with fewer parentheses?

Expressions like
ls map (_ + 1) sum
are lovely because they are left-to-right and not nested. But if the functions in question are defined outside the class, it is less pretty.
Following an example I tried
final class DoublePlus(val self: Double) {
def hypot(x: Double) = sqrt(self*self + x*x)
}
implicit def doubleToDoublePlus(x: Double) =
new DoublePlus(x)
which works fine as far as I can tell, other than
A lot of typing for one method
You need to know in advance that you want to use it this way
Is there a trick that will solve those two problems?
You can call andThen on a function object:
(h andThen g andThen f)(x)
You can't call it on methods directly though, so maybe your h needs to become (h _) to transform the method into a partially applied function. The compiler will translate subsequent method names to functions automatically because the andThen method accepts a Function parameter.
You could also use the pipe operator |> to write something like this:
x |> h |> g |> f
Enriching an existing class/interface with an implicit conversion (which is what you did with doubleToDoublePlus) is all about API design when some classes aren't under your control. I don't recommend to do that lightly just to save a few keystrokes or having a few less parenthesis. So if it's important to be able to type val h = d hypot x, then the extra keystrokes should not be a concern. (there may be object allocations concerns but that's different).
The title and your example also don't match:
f(g(h(x))) can be rewritten asf _ compose g _ compose h _ apply x if your concern is about parenthesis or f compose g compose h apply x if f, g, h are function objects rather than def.
But ls map (_ + 1) sum aren't nested calls as you say, so I'm not sure how that relates to the title. And although it's lovely to use, the library/language designers went through a lot of efforts to make it easy to use and under the hood is not simple (much more complex than your hypot example).
def fgh (n: N) = f(g(h(n)))
val m = fgh (n)
Maybe this, observe how a is provided:
def compose[A, B, C](f: B => C, g: A => B): A => C = (a: A) => f(g(a))
basically like the answer above combine the desired functions to a intermediate one which you then can use easily with map.
Starting Scala 2.13, the standard library provides the chaining operation pipe which can be used to convert/pipe a value with a function of interest.
Using multiple pipes we can thus build a pipeline which as mentioned in the title of your question, minimizes the number of parentheses:
import scala.util.chaining._
x pipe h pipe g pipe f