I am in the process of writing a 2D non-linear Poisson's solver. One intermediate test I performed is using my non-linear solver to solve for a "linear" Poisson equation. Unfortunately, my non-linear solver is giving me incorrect results, unlike if I try to solve it directly in MATLAB using the backslash ""
non-linear solver iteratively code: "incorrect results"
clearvars; clc; close all;
Nx = 20;
Ny = 20;
Lx = 2*pi;
x = (0:Nx-1)/Nx*2*pi; % x coordinate in Fourier, equally spaced grid
kx = fftshift(-Nx/2:Nx/2-1); % wave number vector
kx(kx==0) = 1; %helps with error: matrix ill scaled because of 0s
ygl = -cos(pi*(0:Ny)/Ny)'; %Gauss-Lobatto chebyshev points
%make mesh
[X,Y] = meshgrid(x,ygl);
%Chebyshev matrix:
VGL = cos(acos(ygl(:))*(0:Ny));
dVGL = diag(1./sqrt(1-ygl.^2))*sin(acos(ygl)*(0:Ny))*diag(0:Ny);
dVGL(1,:) = (-1).^(1:Ny+1).*(0:Ny).^2;
dVGL(Ny+1,:) = (0:Ny).^2;
%Diferentiation matrix for Gauss-Lobatto points
Dgl = dVGL/VGL;
D = Dgl; %first-order derivative matrix
D2 = Dgl*Dgl;
%linear Poisson solved iteratively
Igl = speye(Ny+1);
Ig = speye(Ny);
ZNy = diag([0 ones(1,Ny-1) 0]);
div_x_act_on_grad_x = -Igl; % must be multiplied with kx(m)^2 for each Fourier mode
div_y_act_on_grad_y = D * ZNy *D;
u = Y.^2 .* sin( (2*pi / Lx) * X);
uh = fft(u,[],2);
uold = ones(size(u));
uoldk = fft(uold,[],2);
max_iter = 500;
err_max = 1e-5; %change to 1e-8;
for iterations = 1:max_iter
for m = 1:length(kx)
L = div_x_act_on_grad_x * (kx(m)^2) + div_y_act_on_grad_y;
d2xk = div_x_act_on_grad_x * (kx(m)^2) * uoldk;
d2x = real(ifft(d2xk,[],2));
d2yk = div_y_act_on_grad_y *uoldk;
d2y = real(ifft(d2yk,[],2));
ffh = d2xk + d2yk;
phikmax_old = max(max(abs(uoldk)));
unewh(:,m) = L\(ffh(:,m));
end
phikmax = max(max(abs(unewh)));
if phikmax == 0 %norm(unewh,inf) == 0
it_error = err_max /2;
else
it_error = abs( phikmax - phikmax_old) / phikmax;
end
if it_error < err_max
break;
end
end
unew = real(ifft(unewh,[],2));
DEsol = unew - u;
figure
surf(X, Y, unew);
colorbar;
title('Numerical solution of \nabla^2 u = f');
figure
surf(X, Y, u);
colorbar;
title('Exact solution of \nabla^2 u = f');
Direct solver
ubar = Y.^2 .* sin( (2*pi / Lx) * X);
uh = fft(ubar,[],2);
for m = 1:length(kx)
L = div_x_act_on_grad_x * (kx(m)^2) + div_y_act_on_grad_y;
d2xk = div_x_act_on_grad_x * (kx(m)^2) * uh;
d2x = real(ifft(d2xk,[],2));
d2yk = div_y_act_on_grad_y *uh;
d2y = real(ifft(d2yk,[],2));
ffh = d2xk + d2yk;
%----------------
unewh(:,m) = L\(ffh(:,m));
end
How can I fix code 1 to get the same results as code 2?
I am trying to plot a geodesic on a 3D surface (tractrix) with Matlab. This worked for me in the past when I didn't need to parametrize the surface (see here). However, the tractrix called for parameterization, chain rule differentiation, and collection of u,v,x,y and f(x,y) values.
After many mistakes I think that I'm getting the right values for x = f1(u,v) and y = f2(u,v) describing a spiral right at the base of the surface:
What I can't understand is why the z value or height of the 3D plot of the curve is consistently zero, when I'm applying the same mathematical formula that allowed me to plot the surface in the first place, ie. f = #(x,y) a.* (y - tanh(y)) .
Here is the code, which runs without any errors on Octave. I'm typing a special note in upper case on the crucial calls. Also note that I have restricted the number of geodesic lines to 1 to decrease the execution time.
a = 0.3;
u = 0:0.1:(2 * pi);
v = 0:0.1:5;
[X,Y] = meshgrid(u,v);
% NOTE THAT THESE FORMULAS RESULT IN A SUCCESSFUL PLOT OF THE SURFACE:
x = a.* cos(X) ./ cosh(Y);
y = a.* sin(X) ./ cosh(Y);
z = a.* (Y - tanh(Y));
h = surf(x,y,z);
zlim([0, 1.2]);
set(h,'edgecolor','none')
colormap summer
hold on
% THESE ARE THE GENERIC FUNCTIONS (f) WHICH DON'T SEEM TO WORK AT THE END:
f = #(x,y) a.* (y - tanh(y));
f1 = #(u,v) a.* cos(u) ./ cosh(v);
f2 = #(u,v) a.* sin(u) ./ cosh(v);
dfdu = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u+eps,v)-f1(u-eps,v))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u+eps,v)-f2(u-eps,v))/(2*eps));
dfdv = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u,v+eps)-f1(u,v-eps))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u,v+eps)-f2(u,v-eps))/(2*eps));
% Normal vector to the surface:
N = #(u,v) [- dfdu(u,v), - dfdv(u,v), 1]; % Normal vec to surface # any pt.
% Some colors to draw the lines:
C = {'k','r','g','y','m','c'};
for s = 1:1 % No. of lines to be plotted.
% Starting points:
u0 = [0, u(length(u))];
v0 = [0, v(length(v))];
du0 = 0.001;
dv0 = 0.001;
step_size = 0.00005; % Will determine the progression rate from pt to pt.
eta = step_size / sqrt(du0^2 + dv0^2); % Normalization.
eps = 0.0001; % Epsilon
max_num_iter = 100000; % Number of dots in each line.
% Semi-empty vectors to collect results:
U = [[u0(s), u0(s) + eta*du0], zeros(1,max_num_iter - 2)];
V = [[v0(s), v0(s) + eta*dv0], zeros(1,max_num_iter - 2)];
for i = 2:(max_num_iter - 1) % Creating the geodesic:
ut = U(i);
vt = V(i);
xt = f1(ut,vt);
yt = f2(ut,vt);
ft = f(xt,yt);
utm1 = U(i - 1);
vtm1 = V(i - 1);
xtm1 = f1(utm1,vtm1);
ytm1 = f2(utm1,vtm1);
ftm1 = f(xtm1,ytm1);
usymp = ut + (ut - utm1);
vsymp = vt + (vt - vtm1);
xsymp = f1(usymp,vsymp);
ysymp = f2(usymp,vsymp);
fsymp = ft + (ft - ftm1);
df = fsymp - f(xsymp,ysymp); % Is the surface changing? How much?
n = N(ut,vt); % Normal vector at point t
gamma = df * n(3); % Scalar x change f x z value of N
xtp1 = xsymp - gamma * n(1); % Gamma to modulate incre. x & y.
ytp1 = ysymp - gamma * n(2);
U(i + 1) = usymp - gamma * n(1);;
V(i + 1) = vsymp - gamma * n(2);;
end
% THE PROBLEM! f(f1(U,V),f2(U,V)) below YIELDS ALL ZEROS!!! The expected values are between 0 and 1.2.
P = [f1(U,V); f2(U,V); f(f1(U,V),f2(U,V))]; % Compiling results into a matrix.
units = 35; % Determines speed (smaller, faster)
packet = floor(size(P,2)/units);
P = P(:,1: packet * units);
for k = 1:packet:(packet * units)
hold on
plot3(P(1, k:(k+packet-1)), P(2,(k:(k+packet-1))), P(3,(k:(k+packet-1))),
'.', 'MarkerSize', 5,'color',C{s})
drawnow
end
end
The answer is to Cris Luengo's credit, who noticed that the upper-case assigned to the variable Y, used for the calculation of the height of the curve z, was indeed in the parametrization space u,v as intended, and not in the manifold x,y! I don't use Matlab/Octave other than for occasional simulations, and I was trying every other syntactical permutation I could think of without realizing that f fed directly from v (as intended). I changed now the names of the different variables to make it cleaner.
Here is the revised code:
a = 0.3;
u = 0:0.1:(3 * pi);
v = 0:0.1:5;
[U,V] = meshgrid(u,v);
x = a.* cos(U) ./ cosh(V);
y = a.* sin(U) ./ cosh(V);
z = a.* (V - tanh(V));
h = surf(x,y,z);
zlim([0, 1.2]);
set(h,'edgecolor','none')
colormap summer
hold on
f = #(x,y) a.* (y - tanh(y));
f1 = #(u,v) a.* cos(u) ./ cosh(v);
f2 = #(u,v) a.* sin(u) ./ cosh(v);
dfdu = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u+eps,v)-f1(u-eps,v))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u+eps,v)-f2(u-eps,v))/(2*eps));
dfdv = #(u,v) ((f(f1(u,v)+eps, f2(u,v)) - f(f1(u,v) - eps, f2(u,v)))/(2 * eps) .*
(f1(u,v+eps)-f1(u,v-eps))/(2*eps) +
(f(f1(u,v), f2(u,v)+eps) - f(f1(u,v), f2(u,v)-eps))/(2 * eps) .*
(f2(u,v+eps)-f2(u,v-eps))/(2*eps));
% Normal vector to the surface:
N = #(u,v) [- dfdu(u,v), - dfdv(u,v), 1]; % Normal vec to surface # any pt.
% Some colors to draw the lines:
C = {'y','r','k','m','w',[0.8 0.8 1]}; % Color scheme
for s = 1:6 % No. of lines to be plotted.
% Starting points:
u0 = [0, -pi/2, 2*pi, 4*pi/3, pi/4, pi];
v0 = [0, 0, 0, 0, 0, 0];
du0 = [0, -0.0001, 0.001, - 0.001, 0.001, -0.01];
dv0 = [0.1, 0.01, 0.001, 0.001, 0.0005, 0.01];
step_size = 0.00005; % Will determine the progression rate from pt to pt.
eta = step_size / sqrt(du0(s)^2 + dv0(s)^2); % Normalization.
eps = 0.0001; % Epsilon
max_num_iter = 180000; % Number of dots in each line.
% Semi-empty vectors to collect results:
Uc = [[u0(s), u0(s) + eta*du0(s)], zeros(1,max_num_iter - 2)];
Vc = [[v0(s), v0(s) + eta*dv0(s)], zeros(1,max_num_iter - 2)];
for i = 2:(max_num_iter - 1) % Creating the geodesic:
ut = Uc(i);
vt = Vc(i);
xt = f1(ut,vt);
yt = f2(ut,vt);
ft = f(xt,yt);
utm1 = Uc(i - 1);
vtm1 = Vc(i - 1);
xtm1 = f1(utm1,vtm1);
ytm1 = f2(utm1,vtm1);
ftm1 = f(xtm1,ytm1);
usymp = ut + (ut - utm1);
vsymp = vt + (vt - vtm1);
xsymp = f1(usymp,vsymp);
ysymp = f2(usymp,vsymp);
fsymp = ft + (ft - ftm1);
df = fsymp - f(xsymp,ysymp); % Is the surface changing? How much?
n = N(ut,vt); % Normal vector at point t
gamma = df * n(3); % Scalar x change f x z value of N
xtp1 = xsymp - gamma * n(1); % Gamma to modulate incre. x & y.
ytp1 = ysymp - gamma * n(2);
Uc(i + 1) = usymp - gamma * n(1);;
Vc(i + 1) = vsymp - gamma * n(2);;
end
x = f1(Uc,Vc);
y = f2(Uc,Vc);
P = [x; y; f(Uc,Vc)]; % Compiling results into a matrix.
units = 35; % Determines speed (smaller, faster)
packet = floor(size(P,2)/units);
P = P(:,1: packet * units);
for k = 1:packet:(packet * units)
hold on
plot3(P(1, k:(k+packet-1)), P(2,(k:(k+packet-1))), P(3,(k:(k+packet-1))),
'.', 'MarkerSize', 5,'color',C{s})
drawnow
end
end
My Code right now
% Create some example points x and y
t = pi*[0:.05:1,1.1,1.2:.02:2]; a = 3/2*sqrt(2);
for i=1:size(t,2)
x(i) = a*sqrt(2)*cos(t(i))/(sin(t(i)).^2+1);
y(i) = a*sqrt(2)*cos(t(i))*sin(t(i))/(sin(t(i))^2+1);
end
Please note: The points (x_i|y_i) are not necessarily equidistant, that's why t is created like this. Also t should not be used in further code as for my real problems it is not known, I just get a bunch of x, y and z values in the end. For this example I reduced it to 2D.
Now I'm creating ParametricSplines for the x and y values
% Spline
n=100; [x_t, y_t, tt] = ParametricSpline(x, y, n);
xref = ppval(x_t, tt); yref = ppval(y_t, tt);
with the function
function [ x_t, y_t, t_t ] = ParametricSpline(x,y,n)
m = length(x);
t = zeros(m, 1);
for i=2:m
arc_length = sqrt((x(i)-x(i-1))^2 + (y(i)-y(i-1))^2);
t(i) = t(i-1) + arc_length;
end
t=t./t(length(t));
x_t = spline(t, x);
y_t = spline(t, y);
t_t = linspace(0,1,n);
end
The plot generated by
plot(x,y,'ob',...
xref,yref,'xk',...
xref,yref,'-r'),...
axis equal;
looks like the follows: Plot Spline
The Question:
How do I change the code so I always have one of the resulting points (xref_i|yref_i) (shown as Black X in the plot) directly on the originally given points (x_j|y_j) (shown as Blue O) with additionally n points between (x_j|y_j) and (x_j+1|y_j+1)?
E.g. with n=2 I would like to get the following:
(xref_1|yref_1) = (x_1|y_1)
(xref_2|yref_2)
(xref_3|yref_3)
(xref_4|yref_4) = (x_2|y_2)
(xref_5|yref_5)
[...]
I guess the only thing I need is to change the definition of tt but I just can't figure out how... Thanks for your help!
Use this as your function:
function [ x_t, y_t, tt ] = ParametricSpline(x,y,nt)
arc_length = 0;
n = length(x);
t = zeros(n, 1);
mul_p = linspace(0,1,nt+2)';
mul_p = mul_p(2:end);
tt = t(1);
for i=2:n
arc_length = sqrt((x(i)-x(i-1))^2 + (y(i)-y(i-1))^2);
t(i) = t(i-1) + arc_length;
add_points = mul_p * arc_length + t(i-1);
tt = [tt ; add_points];
end
t=t./t(end);
tt = tt./tt(end);
x_t = spline(t, x);
y_t = spline(t, y);
end
The essence:
You have to construct tt in the same way as your distance vector t plus add additional nt points in between.
Introduction
I am using Matlab to simulate some dynamic systems through numerically solving systems of Second Order Ordinary Differential Equations using ODE45. I found a great tutorial from Mathworks (link for tutorial at end) on how to do this.
In the tutorial the system of equations is explicit in x and y as shown below:
x''=-D(y) * x' * sqrt(x'^2 + y'^2)
y''=-D(y) * y' * sqrt(x'^2 + y'^2) + g(y)
Both equations above have form y'' = f(x, x', y, y')
Question
However, I am coming across systems of equations where the variables can not be solved for explicitly as shown in the example. For example one of the systems has the following set of 3 second order ordinary differential equations:
y double prime equation
y'' - .5*L*(x''*sin(x) + x'^2*cos(x) + (k/m)*y - g = 0
x double prime equation
.33*L^2*x'' - .5*L*y''sin(x) - .33*L^2*C*cos(x) + .5*g*L*sin(x) = 0
A single prime is first derivative
A double prime is second derivative
L, g, m, k, and C are given parameters.
How can Matlab be used to numerically solve a set of second order ordinary differential equations where second order can not be explicitly solved for?
Thanks!
Your second system has the form
a11*x'' + a12*y'' = f1(x,y,x',y')
a21*x'' + a22*y'' = f2(x,y,x',y')
which you can solve as a linear system
[x'', y''] = A\f
or in this case explicitly using Cramer's rule
x'' = ( a22*f1 - a12*f2 ) / (a11*a22 - a12*a21)
y'' accordingly.
I would strongly recommend leaving the intermediate variables in the code to reduce chances for typing errors and avoid multiple computation of the same expressions.
Code could look like this (untested)
function dz = odefunc(t,z)
x=z(1); dx=z(2); y=z(3); dy=z(4);
A = [ [-.5*L*sin(x), 1] ; [.33*L^2, -0.5*L*sin(x)] ]
b = [ [dx^2*cos(x) + (k/m)*y-g]; [-.33*L^2*C*cos(x) + .5*g*L*sin(x)] ]
d2 = A\b
dz = [ dx, d2(1), dy, d2(2) ]
end
Yes your method is correct!
I post the following code below:
%Rotating Pendulum Sym Main
clc
clear all;
%Define parameters
global M K L g C;
M = 1;
K = 25.6;
L = 1;
C = 1;
g = 9.8;
% define initial values for theta, thetad, del, deld
e_0 = 1;
ed_0 = 0;
theta_0 = 0;
thetad_0 = .5;
initialValues = [e_0, ed_0, theta_0, thetad_0];
% Set a timespan
t_initial = 0;
t_final = 36;
dt = .01;
N = (t_final - t_initial)/dt;
timeSpan = linspace(t_final, t_initial, N);
% Run ode45 to get z (theta, thetad, del, deld)
[t, z] = ode45(#RotSpngHndl, timeSpan, initialValues);
%initialize variables
e = zeros(N,1);
ed = zeros(N,1);
theta = zeros(N,1);
thetad = zeros(N,1);
T = zeros(N,1);
V = zeros(N,1);
x = zeros(N,1);
y = zeros(N,1);
for i = 1:N
e(i) = z(i, 1);
ed(i) = z(i, 2);
theta(i) = z(i, 3);
thetad(i) = z(i, 4);
T(i) = .5*M*(ed(i)^2 + (1/3)*L^2*C*sin(theta(i)) + (1/3)*L^2*thetad(i)^2 - L*ed(i)*thetad(i)*sin(theta(i)));
V(i) = -M*g*(e(i) + .5*L*cos(theta(i)));
E(i) = T(i) + V(i);
end
figure(1)
plot(t, T,'r');
hold on;
plot(t, V,'b');
plot(t,E,'y');
title('Energy');
xlabel('time(sec)');
legend('Kinetic Energy', 'Potential Energy', 'Total Energy');
Here is function handle file for ode45:
function dz = RotSpngHndl(~, z)
% Define Global Parameters
global M K L g C
A = [1, -.5*L*sin(z(3));
-.5*L*sin(z(3)), (1/3)*L^2];
b = [.5*L*z(4)^2*cos(z(3)) - (K/M)*z(1) + g;
(1/3)*L^2*C*cos(z(3)) + .5*g*L*sin(z(3))];
X = A\b;
% return column vector [ed; edd; ed; edd]
dz = [z(2);
X(1);
z(4);
X(2)];
Assume we have three equations:
eq1 = x1 + (x1 - x2) * t - X == 0;
eq2 = z1 + (z1 - z2) * t - Z == 0;
eq3 = ((X-x1)/a)^2 + ((Z-z1)/b)^2 - 1 == 0;
while six of known variables are:
a = 42 ;
b = 12 ;
x1 = 316190;
z1 = 234070;
x2 = 316190;
z2 = 234070;
So we are looking for three unknown variables that are:
X , Z and t
I wrote two method to solve it. But, since I need to run these code for 5.7 million data, it become really slow.
Method one (using "solve"):
tic
S = solve( eq1 , eq2 , eq3 , X , Z , t ,...
'ReturnConditions', true, 'Real', true);
toc
X = double(S.X(1))
Z = double(S.Z(1))
t = double(S.t(1))
results of method one:
X = 316190;
Z = 234060;
t = -2.9280;
Elapsed time is 0.770429 seconds.
Method two (using "fsolve"):
coeffs = [a,b,x1,x2,z1,z2]; % Known parameters
x0 = [ x2 ; z2 ; 1 ].'; % Initial values for iterations
f_d = #(x0) myfunc(x0,coeffs); % f_d considers x0 as variables
options = optimoptions('fsolve','Display','none');
tic
M = fsolve(f_d,x0,options);
toc
results of method two:
X = 316190; % X = M(1)
Z = 234060; % Z = M(2)
t = -2.9280; % t = M(3)
Elapsed time is 0.014 seconds.
Although, the second method is faster, but it still needs to be improved. Please let me know if you have a better solution for that. Thanks
* extra information:
if you are interested to know what those 3 equations are, the first two are equations of a line in 2D and the third equation is an ellipse equation. I need to find the intersection of the line with the ellipse. Obviously, we have two points as result. But, let's forget about the second answer for simplicity.
My suggestion it's to use the second approce,which it's the recommended by matlab for nonlinear equation system.
Declare a M-function
function Y=mysistem(X)
%X(1) = X
%X(2) = t
%X(3) = Z
a = 42 ;
b = 12 ;
x1 = 316190;
z1 = 234070;
x2 = 316190;
z2 = 234070;
Y(1,1) = x1 + (x1 - x2) * X(2) - X(1);
Y(2,1) = z1 + (z1 - z2) * X(2) - X(3);
Y(3,1) = ((X-x1)/a)^2 + ((Z-z1)/b)^2 - 1;
end
Then for solving use
x0 = [ x2 , z2 , 1 ];
M = fsolve(#mysistem,x0,options);
If you may want to reduce the default precision by changing StepTolerance (default 1e-6).
Also for more increare you may want to use the jacobian matrix for greater efficencies.
For more reference take a look in official documentation:
fsolve Nonlinear Equations with Analytic Jacobian
Basically giving the solver the Jacobian matrix of the system(and special options) you can increase method efficency.