2D color plot using a limited dataset - matlab

I couldn't find a solution after trying for a long time.
I have 3 columns of data: x, y, and the stress value (S) at every point (x,y). I want to generate a 2D color plot displaying continuous color change with the magnitude of the stress (S). The stress values increase from -3*10^4 Pa to 4*10^4 Pa. I only have hundreds of data points for an area, but I want to see the stress magnitude (read from the color) at every location (x, y). What Matlab command should I use?
I want to make a 2D color plot showing stress magnitude (S) at every location (x, y) based on continuous color change using limited data points

I'd use patch with interpolated coloring:
% some data, x/y are random
N = 50;
x = rand(N,1);
y = rand(N,1);
S = sin(2*x)+y;
% plotting
tr = delaunay(x,y);
trisurf(tr,x,y,zeros(N,1),S,'FaceColor','interp');
view (2)

Take a look at surf and mesh in the MATLAB documentation

To further contribute on Gunther Struyf answer; assuming it is a FEM analysis you may already have a connectivity matrix say 'M' and 'x' 'y' column vectors with node coordinates. Stress values at the nodes may be contained in a column vector 'S'; then you may use the patch function as stated above:
patch('faces',M,'vertices',[x(:) y(:)],'facevertexcdata',S(:),'FaceColor','interp');
and you will have a 2D plot of your data similar to the one posted by Gunther Struyf.

Related

Find volume of 3d peaks in matlab

right now I have a 3d scatter plot with peaks that I need to find the volumes for. My data is from an image, so the x- and y- values indicate the pixel positions on the xy-plane, and the z value is the pixel value for each pixel.
Here's my scatter plot:
scatter3(x,y,z,20,z,'filled')
I am trying to find the "volume" of the peaks of the data, like drawn below:
I've tried findpeaks() but it gives me many local maxima without the the two prominent peaks that I'm looking for. In addition, I'm really stuck on how to establish the "base" of my peaks, because my data is from a scatter plot. I've also tried the convex hull and a linear surface fit, and get this:
But I'm still stuck on how to use any of these commands to establish an automated peak "base" and volume. Please let me know if you have any ideas or code segments to help me out, because I am stumped and I can't find anything on Stack Overflow. Sorry in advance if this is really unclear! Thank you so much!
Here is a suggestion for dealing with this problem:
Define a threshold for z height, or define in any other way which points from the scatter are relevant (the black plane in the leftmost figure below).
Within the resulted points, find clusters on the X-Y plane, to define the different regions to calculate. You will have to define manually how many clusters you want.
for each cluster, perform a Delaunay triangulation to estimate its volume.
Here is an example code for all that:
[x,y,z] = peaks(30); % some data
subplot 131
scatter3(x(:),y(:),z(:),[],z(:),'filled')
title('The original data')
th = 2.5; % set a threshold for z values
hold on
surf([-3 -3 3 3],[-4 4 -4 4],ones(4)*th,'FaceColor','k',...
'FaceAlpha',0.5)
hold off
ind = z>th; % get an index of all values of interest
X = x(ind);
Y = y(ind);
Z = z(ind);
clustNum = 3; % the number of clusters should be define manually
T = clusterdata([X Y],clustNum);
subplot 132
gscatter(X,Y,T)
title('A look from above')
subplot 133
hold on
c = ['rgb'];
for k = 1:max(T)
valid = T==k;
% claculate a triangulation of the data:
DT = delaunayTriangulation([X(valid) Y(valid) Z(valid)]);
[K,v] = convexHull(DT); % get the convex hull indices
% plot the volume:
ts = trisurf(K,DT.Points(:,1),DT.Points(:,2),DT.Points(:,3),...
'FaceColor',c(k));
text(mean(X(valid)),mean(Y(valid)),max(Z(valid))*1.3,...
num2str(v),'FontSize',12)
end
hold off
view([-45 40])
title('The volumes')
Note: this code uses different functions from several toolboxes. In any case that something does not work, first make sure that you have the relevant toolbox, there are alternatives to most of them.
Having already a mesh, maybe you could use the process described in https://se.mathworks.com/matlabcentral/answers/277512-how-to-find-peaks-in-3d-mesh .
If not, making a linear regression on (x,z) or (y,z) plane could make a base for you to find the peaks.
Out of experience in data with plenty of noise, selecting the peaks manually is often faster if you have small set of data to make the analysis. Just plot every peak with its number from findpeaks() and select the ones that are relevant to you. An interpolation to a smoother data can help to solve the problem in the long term (but creates a problem by itself).
Other option will be searching for peaks in the (x,z) and (y,z) planes, then having the amplitude of each peak in an (x) [or (y)] interval and from there make a integration for every area.

How to create a 2D-matrix out of my data for surf()?

I have a 25000x3-matrix, with each row containing a x-, a y- and a z-value. Now I wanted to do a graphical plot out of these. But for using for example surf(Z) I have to use a mxn-matrix as Z with m equal the size of x and n equal the size of y. How can I reshape the matrix I have to the needed mxn-matrix? The problem is that my x- and y-values are no ints, but floats, so I assume that I have to do a interpolation first. Is that true? My data plotted with plot3 looks like:
The fact that your x- and y- values are not integers is not a problem at all. The real question is: are your (x,y) points forming a grid, or not ?
If your points are forming a grid, then you have to reshape your columns to form m-by-n arrays. You may need to sort your data according to the first, then second column and then use the reshape function.
If your points are not forming a grid, then you will have to make an interpolation. By chance the scatterinterpolant class can nicely help you in doing so.
As you can see, the data you are providing is neither given in a gridded way, nor is the point cloud clean. You could however try to do the following:
Project the point cloud onto the x-y plane
Triangulate those points
Give the points their original z-coordinate back.
Plot the surface using trisurf
Here is a MATLAB code that does this:
%// Generate some points P
[X,Y] = ndgrid(0:30);
P = [X(:), Y(:), X(:).^2+Y(:)];
%%// Here the actual computation starts
[~,I] = unique(P(:,1:2),'rows'); %// Remove points with duplicate (x,y)-coords
P = P(I,:);
T = delaunay(P(:,1),P(:,2)); %// Triangulate the 2D-projection
surface = triangulation(T, P(:,1), P(:,2), P(:,3)); %// Project back to 3D
trisurf(surface); %// Plot
You may want to remove stray points first, though.

How to use matlab contourf to draw two-dimensional decision boundary

I finished an SVM training and got data like X, Y. X is the feature matrix only with 2 dimensions, and Y is the classification labels. Because the data is only in two dimensions, so I would like to draw a decision boundary to show the surface of support vectors.
I use contouf in Matlab to do the trick, but really find it hard to understand how to use the function.
I wrote like:
#1 try:
contourf(X);
#2 try:
contourf([X(:,1) X(:,2) Y]);
#3 try:
Z(:,:,1)=X(Y==1,:);
Z(:,:,2)=X(Y==2,:);
contourf(Z);
all these things do not correctly. And I checked the Matlab help files, most of them make Z as a function, so I really do not know how to form the correct Z matrix.
If you're using the svmtrain and svmclassify commands from Bioinformatics Toolbox, you can just use the additional input argument (...'showplot', true), and it will display a scatter plot with a decision boundary and the support vectors highlighted.
If you're using your own SVM, or a third-party tool such as libSVM, what you probably need to do is to:
Create a grid of points in your 2D input feature space using the meshgrid command
Classify those points using your trained SVM
Plot the grid of points and the classifications using contourf.
For example, in kind-of-MATLAB-but-pseudocode, assuming your input features are called X1 and X2:
numPtsInGrid = 100;
x1Range = linspace(x1lower, x1upper, numPtsInGrid);
x2Range = linspace(x2lower, x2upper, numPtsInGrid);
[X1, X2] = meshgrid(x1Range, x2Range);
Z = classifyWithMySVMSomehow([X1(:), X2(:)]);
contourf(X1(:), X2(:), Z(:))
Hope that helps.
I know it's been a while but I will give it a try in case someone else will come up with that issue.
Assume we have a 2D training set so as to train an SVM model, in other words the feature space is a 2D space. We know that a kernel SVM model leads to a score (or decision) function of the form:
f(x) = sumi=1 to N(aiyik(x,xi)) + b
Where N is the number of support vectors, xi is the i -th support vector, ai is the estimated Lagrange multiplier and yi the associated class label. Values(scores) of decision function in way depict the distance of the observation x frοm the decision boundary.
Now assume that for every point (X,Y) in the 2D feature space we can find the corresponding score of the decision function. We can plot the results in the 3D euclidean space, where X corresponds to values of first feature vector f1, Y to values of second feature f2, and Z to the the return of decision function for every point (X,Y). The intersection of this 3D figure with the Z=0 plane gives us the decision boundary into the two-dimensional feature space. In other words, imagine that the decision boundary is formed by the (X,Y) points that have scores equal to 0. Seems logical right?
Now in MATLAB you can easily do that, by first creating a grid in X,Y space:
d = 0.02;
[x1Grid,x2Grid] = meshgrid(minimum_X:d:maximum_X,minimum_Y:d:maximum_Y);
d is selected according to the desired resolution of the grid.
Then for a trained model SVMModel find the scores of every grid's point:
xGrid = [x1Grid(:),x2Grid(:)];
[~,scores] = predict(SVMModel,xGrid);
Finally plot the decision boundary
figure;
contour(x1Grid,x2Grid,reshape(scores(:,2),size(x1Grid)),[0 0],'k');
Contour gives us a 2D graph where information about the 3rd dimension is depicted as solid lines in the 2D plane. These lines implie iso-response values, in other words (X,Y) points with same Z value. In our occasion contour gives us the decision boundary.
Hope I helped to make all that more clear. You can find very useful information and examples in the following links:
MATLAB's example
Representation of decision function in 3D space

How to create 3D joint density plot MATLAB?

I 'm having a problem with creating a joint density function from data. What I have is queue sizes from a stock as two vectors saved as:
X = [askQueueSize bidQueueSize];
I then use the hist3-function to create a 3D histogram. This is what I get:
http://dl.dropbox.com/u/709705/hist-plot.png
What I want is to have the Z-axis normalized so that it goes from [0 1].
How do I do that? Or do someone have a great joint density matlab function on stock?
This is similar (How to draw probability density function in MatLab?) but in 2D.
What I want is 3D with x:ask queue, y:bid queue, z:probability.
Would greatly appreciate if someone could help me with this, because I've hit a wall over here.
I couldn't see a simple way of doing this. You can get the histogram counts back from hist3 using
[N C] = hist3(X);
and the idea would be to normalise them with:
N = N / sum(N(:));
but I can't find a nice way to plot them back to a histogram afterwards (You can use bar3(N), but I think the axes labels will need to be set manually).
The solution I ended up with involves modifying the code of hist3. If you have access to this (edit hist3) then this may work for you, but I'm not really sure what the legal situation is (you need a licence for the statistics toolbox, if you copy hist3 and modify it yourself, this is probably not legal).
Anyway, I found the place where the data is being prepared for a surf plot. There are 3 matrices corresponding to x, y, and z. Just before the contents of the z matrix were calculated (line 256), I inserted:
n = n / sum(n(:));
which normalises the count matrix.
Finally once the histogram is plotted, you can set the axis limits with:
xlim([0, 1]);
if necessary.
With help from a guy at mathworks forum, this is the great solution I ended up with:
(data_x and data_y are values, which you want to calculate at hist3)
x = min_x:step:max_x; % axis x, which you want to see
y = min_y:step:max_y; % axis y, which you want to see
[X,Y] = meshgrid(x,y); *%important for "surf" - makes defined grid*
pdf = hist3([data_x , data_y],{x y}); %standard hist3 (calculated for yours axis)
pdf_normalize = (pdf'./length(data_x)); %normalization means devide it by length of
%data_x (or data_y)
figure()
surf(X,Y,pdf_normalize) % plot distribution
This gave me the joint density plot in 3D. Which can be checked by calculating the integral over the surface with:
integralOverDensityPlot = sum(trapz(pdf_normalize));
When the variable step goes to zero the variable integralOverDensityPlot goes to 1.0
Hope this help someone!
There is a fast way how to do this with hist3 function:
[bins centers] = hist3(X); % X should be matrix with two columns
c_1 = centers{1};
c_2 = centers{2};
pdf = bins / (sum(sum(bins))*(c_1(2)-c_1(1)) * (c_2(2)-c_2(1)));
If you "integrate" this you will get 1.
sum(sum(pdf * (c_1(2)-c_1(1)) * (c_2(2)-c_2(1))))

geometric random graph in a circle

I wanted to generate a set of coordinates distributed uniformly at random within a ball of radius R. Is there any way to do this in Matlab without for loops, in a matrix-like form?
Thanks
UPDATE:
I'm sorry for the confusion. I only need to generate n points uniformly at random over a circle of radius R, not a sphere.
the correct answer is here http://mathworld.wolfram.com/DiskPointPicking.html. The distribution is known as "Disk point picking"
I was about to mark this as a duplicate of a previous question on generating uniform distribution of points in a sphere, but I think you deserve the benefit of doubt here, as although there's a matlab script in the question, most of that thread is python.
This little function given in the question (and I'm pasting it directly from there), is what you need.
function X = randsphere(m,n,r)
% This function returns an m by n array, X, in which
% each of the m rows has the n Cartesian coordinates
% of a random point uniformly-distributed over the
% interior of an n-dimensional hypersphere with
% radius r and center at the origin. The function
% 'randn' is initially used to generate m sets of n
% random variables with independent multivariate
% normal distribution, with mean 0 and variance 1.
% Then the incomplete gamma function, 'gammainc',
% is used to map these points radially to fit in the
% hypersphere of finite radius r with a uniform % spatial distribution.
% Roger Stafford - 12/23/05
X = randn(m,n);
s2 = sum(X.^2,2);
X = X.*repmat(r*(gammainc(s2/2,n/2).^(1/n))./sqrt(s2),1,n);
To learn why you can't just use uniform random variable for all three co-ordinates as one might think is the correct way, give this article a read.
For the sake of completeness, here is some MATLAB code for a point-culling solution. It generates a set of random points within a unit cube, removes points that are outside a unit sphere, and scales the coordinate points up to fill a sphere of radius R:
XYZ = rand(1000,3)-0.5; %# 1000 random 3-D coordinates
index = (sum(XYZ.^2,2) <= 0.25); %# Find the points inside the unit sphere
XYZ = 2*R.*XYZ(index,:); %# Remove points and scale the coordinates
One key drawback to this point-culling method is that it makes it difficult to generate a specific number of points. For example, if you want to generate 1000 points within your sphere, how many do you have to create in the cube before culling them? If you scale up the number of points generated in the cube by a factor of 6/pi (i.e. the ratio of the volume of a unit cube to a unit sphere), then you can get close to the number of desired points in the sphere. However, since we're dealing with (pseudo)random numbers after all, we can never be absolutely certain we will generate enough points that fall in the sphere.
In short, if you want to generate a specific number of points, I'd try out one of the other solutions suggested. Otherwise, the point-culling solution is nice and simple.
Not sure if I understand your question correctly, but can't you just generate any random number inside a sphere by setting φ, θ and r, assigned to random numbers?