I wrote a parser to act as a lexer. This lexer parses a file and returns a list of tokens, each of which is a case class or object that extends a common trait.
I am now trying to write a parser for the output of the lexer, but I have hit a very confusing snag. The parser is happy to implicitly cast my case objects, but throws a fit if I even try to call apply(classHere) manually.
The following is a simplified version of my code:
// CODE
trait Token
case class StringWrapperIgnoresCase(val string: String) {
private case class InnerWrapper(s: String)
lazy val lower = string.toLowerCase
override lazy val hashCode = InnerWrapper(lower).hashCode
override def equals(that: Any) =
that.isInstanceOf[StringWrapperIgnoresCase] &&
lower == that.asInstanceOf[StringWrapperIgnoresCase].lower
}
case class ID(val text: String)
extends StringWrapperIgnoresCase(text)
with Token {
override def toString = "ID(" + text + ")"
}
case object PERIOD extends Token
object Parser extends Parsers {
type Elem = Token
def doesWork: Parser[Token] = PERIOD
def doesNotWork: Parser[Token] = ID
}
The compiler reports the following message about doesNotWork:
// ERROR MESSAGE
type mismatch; found : alan.parser.ID.type (with underlying type object alan.parser.ID) required: alan.parser.Parser.Parser[alan.parser.Token]
How can I fix this?
Update: It wasn't clear to me from your question exactly what you were asking, but now that you've specified that you want a parser that matches any ID in your answer, here's a more idiomatic solution:
val id: Parser[ID] = accept("ID", { case i: ID => i })
Here you've provided a description of what the parser wants (for error messages) and a partial function with IDs as its domain. You could also use the acceptIf version that xiefei provides in a comment on your answer.
When you refer to a case class (as opposed to a case object) without a parameter list, you get the automatically generated companion object, which is not an instance of the class itself. Consider the following:
sealed trait Foo
case class Bar(i: Int) extends Foo
case object Baz extends Foo
Now Baz: Foo is just fine, but Bar: Foo will give an error very similar to what you're seeing.
Note also that what's happening here isn't strictly casting. The Parsers trait has a method with the following signature:
implicit def accept(e: Elem): Parser[Elem]
When you write this:
def doesWork: Parser[Token] = PERIOD
You're trying to type an Elem as a Parser[Elem], and the implicit conversion kicks in (see section 7.3 of the spec for more information about implicit conversions). When you write this, on the other hand:
def doesNotWork: Parser[Token] = ID
You're trying to type the ID companion object (which has type ID.type, not ID or Token, and therefore not Elem) as a Parser[Elem], and there's no implicit conversion that makes this possible.
You're probably better off writing out accept(PERIOD) and accept(ID("whatever")), for now, at least, and obeying the deprecation warning that says the following when you try to compile your code:
Case-to-case inheritance has potentially dangerous bugs which are
unlikely to be fixed.
Using what TravisBrown and drstevens have said, I have added a new production to the parser:
def id = {
acceptIf(
_ match {
case ID(_) => true
case _ => false
}
)("'ID(_)' expected but " + _ + " found")
}
def nowWorks = id
I won't accept this as the answer for the time being to allow someone to provide a more elegant solution than this. This looks a bit messy for my tastes, and I'm certain someone more accustomed to the functional programming approach will turn this into an elegant one-liner.
Related
I have a very generic message object that I get back from a queue like:
case class Message(key: String, properties: Map[String, String])
I then have a bunch of very specific classes that represent a message, and I use properties.get("type") to determine which particular message it is:
sealed trait BaseMessage
case class LoginMessage(userId: Int, ....) extends BaseMessage
case class RegisterMessage(email: String, firstName: String, ....) extends BaseMessage
Now in my code I have to convert from a generic Message to a particular message in many places, and I want to create this in a single place like:
Currently I am doing something like:
val m = Message(....)
val myMessage = m.properties.get("type") match {
case Some("login") => LoginMessage(m.properties("userID"), ...)
case ...
}
What options do I have in making this less cumbersome in scala?
I don't know all your context here, but I can suggest using implicit conversions if you don't want to bring another library in your project. Anyway, implicit conversions can help you separate a lot the implementation or override it "on-the-fly" as needed.
We can start by defining a MessageConverter trait that is actually a function:
/**
* Try[T] here is useful to track deserialization errors. If you don't need it you can use Option[T] instead.
*/
trait MessageConverter[T <: BaseMessage] extends (Message => Try[T])
Now define an object that holds both the implementations and also enables a nice #as[T] method on Message instances:
object MessageConverters {
/**
* Useful to perform conversions such as:
* {{{
* import MessageConverters._
*
* message.as[LoginMessage]
* message.as[RegisterMessage]
* }}}
*/
implicit class MessageConv(val message: Message) extends AnyVal {
def as[T <: BaseMessage : MessageConverter]: Try[T] =
implicitly[MessageConverter[T]].apply(message)
}
// Define below message converters for each particular type
implicit val loginMessageConverter = new MessageConverter[LoginMessage] {
override def apply(message: Message): Try[LoginMessage] = {
// Parse the properties and build the instance here or fail if you can't.
}
}
}
That's it! It may not be the best solution as implicits bring complexity and they make code harder to follow. However, if you follow a well-defined structure for storing these implicit values and be careful how you pass them around, then you shouldn't have any issues.
You can convert the properties map to Json and read it as a case class. Assuming that the keys to the map have the same name as your case class fields you can write a formatter using playjson:
object LoginMessage {
implicit val fmtLoginMessage = Json.format[LoginMessage]
}
If the fields don't have the same name you will have to specify the reads object manually. Your code to convert it into a case class would be something like:
object BaseMessageFactory {
def getMessage(msg: Message): Option[BaseMessage] = {
val propertiesJson = Json.toJson(msg.properties)
msg.properties.get("type").map {
case "login" => propertiesJson.as[LoginMessage]
...
case _ => //Some error
}
}
}
The signature may differ depending on how you want to deal with error handling.
Note: There's an EDIT below!
Note: There's another EDIT below!
I have written a Scala annotation macro that is being passed a class and creates (or rather populates) a case object. The name of the case object is the same as the name of the passed class. More importantly, for every field of the passed class, there will be a field in the case object of the same name. The fields of the case object, however, are all of type String, and their value is the name of the type of the respective field in the passed class. Example:
// Using the annotation macro to populate a case object called `String`
#RegisterClass(classOf[String]) case object String
// The class `String` defines a field called `value` of type `char[]`.
// The case object also has a field `value`, containing `"char[]"`.
println(String.value) // Prints `"char[]"` to the console
This, however, seems to only work with pre-defined classes such as String. If I define a case class A(...) and try to do #RegisterClass(classOf[A]) case object A, I get the following error:
[info] scala.tools.reflect.ToolBoxError: reflective compilation has failed:
[info]
[info] not found: type A
What have I done wrong? The code of my macro can be found below. Also, if someone notices un-idiomatic Scala or bad practices in general, I wouldn't mind a hint. Thank you very much in advance!
class RegisterClass[T](clazz: Class[T]) extends StaticAnnotation {
def macroTransform(annottees: Any*) =
macro RegisterClass.expandImpl[T]
}
object RegisterClass {
def expandImpl[T](c: blackbox.Context)(annottees: c.Expr[Any]*) = {
import c.universe._
val clazz: Class[T] = c.prefix.tree match {
case q"new RegisterClass($clazz)" => c.eval[Class[T]](c.Expr(clazz))
case _ => c.abort(c.enclosingPosition, "RegisterClass: Annotation expects a Class[T] instance as argument.")
}
annottees.map(_.tree) match {
case List(q"case object $caseObjectName") =>
if (caseObjectName.toString != clazz.getSimpleName)
c.abort(c.enclosingPosition, "RegisterClass: Annotated case object and class T of passed Class[T] instance" +
"must have the same name.")
val clazzFields = clazz.getDeclaredFields.map(field => field.getName -> field.getType.getSimpleName).toList
val caseObjectFields = clazzFields.map(field => {
val fieldName: TermName = field._1
val fieldType: String = field._2
q"val $fieldName = $fieldType"
})
c.Expr[Any](q"case object $caseObjectName { ..$caseObjectFields }")
case _ => c.abort(c.enclosingPosition, "RegisterClass: Annotation must be applied to a case object definition.")
}
}
}
EDIT: As Eugene Burmako pointed out, the error happens because class A hasn't been compiled yet, so a java.lang.Class for it doesn't exist. I have now started a bounty of 100 StackOverflow points for everyone who as an idea how one could get this to work!
EDIT 2: Some background on the use case: As part of my bachelor thesis I am working on a Scala DSL for expressing queries for event processing systems. Those queries are traditionally expressed as strings, which induces a lot of problems. A typical query would look like that: "select A.id, B.timestamp from pattern[A -> B]". Meaning: If an event of type A occurs and after that an event of type B occurs, too, give me the id of the A event and the timestamp of the B event. The types A and B usually are simple Java classes over which I have no control. id and timestamp are fields of those classes. I would like queries of my DSL to look like that: select (A.id, B.timestamp) { /* ... * / }. This means that for every class representing an event type, e.g., A, I need a companion object -- ideally of the same name. This companion object should have the same fields as the respective class, so that I can pass its fields to the select function, like so: select (A.id, B.timestamp) { /* ... * / }. This way, if I tried to pass A.idd to the select function, it would fail at compile-time if there was no such field in the original class -- because then there would not be one in the companion object either.
This isn't an answer to your macro problem, but it could be a solution to your general problem.
If you can allow a minor change to the syntax of your DSL this might be possible without using macro's (depending on other requirements not mentioned in this question).
scala> class Select[A,B]{
| def apply[R,S](fa: A => R, fb: B => S)(body: => Unit) = ???
| }
defined class Select
scala> def select[A,B] = new Select[A,B]
select: [A, B]=> Select[A,B]
scala> class MyA { def id = 42L }
defined class MyA
scala> class MyB { def timestamp = "foo" }
defined class MyB
scala> select[A,B](_.id, _.timestamp){ /* ... */ }
scala.NotImplementedError: an implementation is missing
I use the class Select here as a means to be able to specify the types of your event classes while letting the compiler infer the result types of the functions fa and fb. If your don't need those result types you could just write it as def select[A,B](fa: A => Any, fb: B => Any)(body: => Unit) = ???.
If necessary you can still implement the select or apply method as a macro. But using this syntax, you will no longer need to generate objects with macro annotations.
For a project of mine I have implemented a Enum based upon
trait Enum[A] {
trait Value { self: A =>
_values :+= this
}
private var _values = List.empty[A]
def values = _values
}
sealed trait Currency extends Currency.Value
object Currency extends Enum[Currency] {
case object EUR extends Currency
case object GBP extends Currency
}
from Case objects vs Enumerations in Scala. I worked quite nice, till I run into the following problem. Case objects seem to be lazy and if I use Currency.value I might actually get an empty List. It would have been possible to make a call against all Enum Values on startup so that the value list would be populated, but that would be kind of defeating the point.
So I ventured into the dark and unknown places of scala reflection and came up with this solution, based upon the following SO answers. Can I get a compile-time list of all of the case objects which derive from a sealed parent in Scala?
and How can I get the actual object referred to by Scala 2.10 reflection?
import scala.reflect.runtime.universe._
abstract class Enum[A: TypeTag] {
trait Value
private def sealedDescendants: Option[Set[Symbol]] = {
val symbol = typeOf[A].typeSymbol
val internal = symbol.asInstanceOf[scala.reflect.internal.Symbols#Symbol]
if (internal.isSealed)
Some(internal.sealedDescendants.map(_.asInstanceOf[Symbol]) - symbol)
else None
}
def values = (sealedDescendants getOrElse Set.empty).map(
symbol => symbol.owner.typeSignature.member(symbol.name.toTermName)).map(
module => reflect.runtime.currentMirror.reflectModule(module.asModule).instance).map(
obj => obj.asInstanceOf[A]
)
}
The amazing part of this is that it actually works, but it is ugly as hell and I would be interested if it would be possible to make this simpler and more elegant and to get rid of the asInstanceOf calls.
Here is a simple macro based implementation:
import scala.language.experimental.macros
import scala.reflect.macros.blackbox
abstract class Enum[E] {
def values: Seq[E] = macro Enum.caseObjectsSeqImpl[E]
}
object Enum {
def caseObjectsSeqImpl[A: c.WeakTypeTag](c: blackbox.Context) = {
import c.universe._
val typeSymbol = weakTypeOf[A].typeSymbol.asClass
require(typeSymbol.isSealed)
val subclasses = typeSymbol.knownDirectSubclasses
.filter(_.asClass.isCaseClass)
.map(s => Ident(s.companion))
.toList
val seqTSymbol = weakTypeOf[Seq[A]].typeSymbol.companion
c.Expr(Apply(Ident(seqTSymbol), subclasses))
}
}
With this you could then write:
sealed trait Currency
object Currency extends Enum[Currency] {
case object USD extends Currency
case object EUR extends Currency
}
so then
Currency.values == Seq(Currency.USD, Currency.EUR)
Since it's a macro, the Seq(Currency.USD, Currency.EUR) is generated at compile time, rather than runtime. Note, though, that since it's a macro, the definition of the class Enum must be in a separate project from where it is used (i.e. the concrete subclasses of Enum like Currency). This is a relatively simple implementation; you could do more complicated things like traverse multilevel class hierarchies to find more case objects at the cost of greater complexity, but hopefully this will get you started.
A late answer, but anyways...
As wallnuss said, knownDirectSubclasses is unreliable as of writing and has been for quite some time.
I created a small lib called Enumeratum (https://github.com/lloydmeta/enumeratum) that allows you to use case objects as enums in a similar way, but doesn't use knownDirectSubclasses and instead looks at the body that encloses the method call to find subclasses. It has proved to be reliable thus far.
The article "“You don’t need a macro” Except when you do" by Max Afonov
maxaf describes a nice way to use macro for defining enums.
The end-result of that implementation is visible in github.com/maxaf/numerato
Simply create a plain class, annotate it with #enum, and use the familiar val ... = Value declaration to define a few enum values.
The #enum annotation invokes a macro, which will:
Replace your Status class with a sealed Status class suitable for acting as a base type for enum values. Specifically, it'll grow a (val index: Int, val name: String) constructor. These parameters will be supplied by the macro, so you don't have to worry about it.
Generate a Status companion object, which will contain most of the pieces that now make Status an enumeration. This includes a values: List[Status], plus lookup methods.
Give the above Status enum, here's what the generated code looks like:
scala> #enum(debug = true) class Status {
| val Enabled, Disabled = Value
| }
{
sealed abstract class Status(val index: Int, val name: String)(implicit sealant: Status.Sealant);
object Status {
#scala.annotation.implicitNotFound(msg = "Enum types annotated with ".+("#enum can not be extended directly. To add another value to the enum, ").+("please adjust your `def ... = Value` declaration.")) sealed abstract protected class Sealant;
implicit protected object Sealant extends Sealant;
case object Enabled extends Status(0, "Enabled") with scala.Product with scala.Serializable;
case object Disabled extends Status(1, "Disabled") with scala.Product with scala.Serializable;
val values: List[Status] = List(Enabled, Disabled);
val fromIndex: _root_.scala.Function1[Int, Status] = Map(Enabled.index.->(Enabled), Disabled.index.->(Disabled));
val fromName: _root_.scala.Function1[String, Status] = Map(Enabled.name.->(Enabled), Disabled.name.->(Disabled));
def switch[A](pf: PartialFunction[Status, A]): _root_.scala.Function1[Status, A] = macro numerato.SwitchMacros.switch_impl[Status, A]
};
()
}
defined class Status
defined object Status
I am upgrading existing code from Rogue 1.1.8 to 2.0.0 and lift-mongodb-record from 2.4-M5 to 2.5.
I'm having difficulty writing MongoCaseClassField that contains a scala enum, that I really could use some help with.
For example,
object MyEnum extends Enumeration {
type MyEnum = Value
val A = Value(0)
val B = Value(1)
}
case class MyCaseClass(name: String, value: MyEnum.MyEnum)
class MyMongo extends MongoRecord[MyMongo] with StringPk[MyMongo] {
def meta = MyMongo
class MongoCaseClassFieldWithMyEnum[OwnerType <: net.liftweb.record.Record[OwnerType], CaseType](rec : OwnerType)(implicit mf : Manifest[CaseType]) extends MongoCaseClassField[OwnerType, CaseType](rec)(mf) {
override def formats = super.formats + new EnumSerializer(MyEnum)
}
object myCaseClass extends MongoCaseClassFieldWithMyEnum[MyMongo, MyCaseClass](this)
/// ...
}
When we try to write to this field, we get the following error:
could not find implicit value for evidence parameter of type
com.foursquare.rogue.BSONType[MyCaseClass]
.and(_.myCaseClass setTo myCaseClass)
We used to have this working in Rogue 1.1.8, by using our own version of the MongoCaseClassField, which made the #formats method overridable. But that feature was included into lift-mongodb-record in 2.5-RC6, so we thought this should just work now?
Answer coming from : http://grokbase.com/t/gg/rogue-users/1367nscf80/how-to-update-a-record-with-mongocaseclassfield-when-case-class-contains-a-scala-enumeration#20130612woc3x7utvaoacu7tv7lzn4sr2q
But more convenient directly here on StackOverFlow:
Sorry, I should have chimed in here sooner.
One of the long-standing problems with Rogue was that it was too easy to
accidentally make a field that was not serializable as BSON, and have it
fail at runtime (when you try to add that value to a DBObject) rather than
at compile time.
I introduced the BSONType type class to try to address this. The upside is
it catches BSON errors at compile time. The downside is you need to make a
choice when it comes to case classes.
If you want to do this the "correct" way, define your case class plus a
BSONType "witness" for that case class. To define a BSONType witness, you
need to provide serialization from that type to a BSON type. Example:
case class TestCC(v: Int)
implicit object TestCCIsBSONType extends BSONType[TestCC] {
override def asBSONObject(v: TestCC): AnyRef = {
// Create a BSON object
val ret = new BasicBSONObject
// Serialize all the fields of the case class
ret.put("v", v.v)
ret
}
}
That said, this can be quite burdensome if you're doing it for each case
class. Your second option is to define a generic witness that works for any
case class, if you have a generic serialization scheme:
implicit def CaseClassesAreBSONTypes[CC <: CaseClass]: BSONType[CC] =
new BSONType[CC] {
override def asBSONObject(v: CC): AnyRef = {
// your generic serialization code here, maybe involving formats
}
}
Hope this helps,
So here's the situation. I want to define a case class like so:
case class A(val s: String)
and I want to define an object to ensure that when I create instances of the class, the value for 's' is always uppercase, like so:
object A {
def apply(s: String) = new A(s.toUpperCase)
}
However, this doesn't work since Scala is complaining that the apply(s: String) method is defined twice. I understand that the case class syntax will automatically define it for me, but isn't there another way I can achieve this? I'd like to stick with the case class since I want to use it for pattern matching.
The reason for the conflict is that the case class provides the exact same apply() method (same signature).
First of all I would like to suggest you use require:
case class A(s: String) {
require(! s.toCharArray.exists( _.isLower ), "Bad string: "+ s)
}
This will throw an Exception if the user tries to create an instance where s includes lower case chars. This is a good use of case classes, since what you put into the constructor also is what you get out when you use pattern matching (match).
If this is not what you want, then I would make the constructor private and force the users to only use the apply method:
class A private (val s: String) {
}
object A {
def apply(s: String): A = new A(s.toUpperCase)
}
As you see, A is no longer a case class. I am not sure if case classes with immutable fields are meant for modification of the incoming values, since the name "case class" implies it should be possible to extract the (unmodified) constructor arguments using match.
UPDATE 2016/02/25:
While the answer I wrote below remains sufficient, it's worth also referencing another related answer to this regarding the case class's companion object. Namely, how does one exactly reproduce the compiler generated implicit companion object which occurs when one only defines the case class itself. For me, it turned out to be counter intuitive.
Summary:
You can alter the value of a case class parameter before it is stored in the case class pretty simply while it still remaining a valid(ated) ADT (Abstract Data Type). While the solution was relatively simple, discovering the details was quite a bit more challenging.
Details:
If you want to ensure only valid instances of your case class can ever be instantiated which is an essential assumption behind an ADT (Abstract Data Type), there are a number of things you must do.
For example, a compiler generated copy method is provided by default on a case class. So, even if you were very careful to ensure only instances were created via the explicit companion object's apply method which guaranteed they could only ever contain upper case values, the following code would produce a case class instance with a lower case value:
val a1 = A("Hi There") //contains "HI THERE"
val a2 = a1.copy(s = "gotcha") //contains "gotcha"
Additionally, case classes implement java.io.Serializable. This means that your careful strategy to only have upper case instances can be subverted with a simple text editor and deserialization.
So, for all the various ways your case class can be used (benevolently and/or malevolently), here are the actions you must take:
For your explicit companion object:
Create it using exactly the same name as your case class
This has access to the case class's private parts
Create an apply method with exactly the same signature as the primary constructor for your case class
This will successfully compile once step 2.1 is completed
Provide an implementation obtaining an instance of the case class using the new operator and providing an empty implementation {}
This will now instantiate the case class strictly on your terms
The empty implementation {} must be provided because the case class is declared abstract (see step 2.1)
For your case class:
Declare it abstract
Prevents the Scala compiler from generating an apply method in the companion object which is what was causing the "method is defined twice..." compilation error (step 1.2 above)
Mark the primary constructor as private[A]
The primary constructor is now only available to the case class itself and to its companion object (the one we defined above in step 1.1)
Create a readResolve method
Provide an implementation using the apply method (step 1.2 above)
Create a copy method
Define it to have exactly the same signature as the case class's primary constructor
For each parameter, add a default value using the same parameter name (ex: s: String = s)
Provide an implementation using the apply method (step 1.2 below)
Here's your code modified with the above actions:
object A {
def apply(s: String, i: Int): A =
new A(s.toUpperCase, i) {} //abstract class implementation intentionally empty
}
abstract case class A private[A] (s: String, i: Int) {
private def readResolve(): Object = //to ensure validation and possible singleton-ness, must override readResolve to use explicit companion object apply method
A.apply(s, i)
def copy(s: String = s, i: Int = i): A =
A.apply(s, i)
}
And here's your code after implementing the require (suggested in the #ollekullberg answer) and also identifying the ideal place to put any sort of caching:
object A {
def apply(s: String, i: Int): A = {
require(s.forall(_.isUpper), s"Bad String: $s")
//TODO: Insert normal instance caching mechanism here
new A(s, i) {} //abstract class implementation intentionally empty
}
}
abstract case class A private[A] (s: String, i: Int) {
private def readResolve(): Object = //to ensure validation and possible singleton-ness, must override readResolve to use explicit companion object apply method
A.apply(s, i)
def copy(s: String = s, i: Int = i): A =
A.apply(s, i)
}
And this version is more secure/robust if this code will be used via Java interop (hides the case class as an implementation and creates a final class which prevents derivations):
object A {
private[A] abstract case class AImpl private[A] (s: String, i: Int)
def apply(s: String, i: Int): A = {
require(s.forall(_.isUpper), s"Bad String: $s")
//TODO: Insert normal instance caching mechanism here
new A(s, i)
}
}
final class A private[A] (s: String, i: Int) extends A.AImpl(s, i) {
private def readResolve(): Object = //to ensure validation and possible singleton-ness, must override readResolve to use explicit companion object apply method
A.apply(s, i)
def copy(s: String = s, i: Int = i): A =
A.apply(s, i)
}
While this directly answers your question, there are even more ways to expand this pathway around case classes beyond instance caching. For my own project needs, I have created an even more expansive solution which I have documented on CodeReview (a StackOverflow sister site). If you end up looking it over, using or leveraging my solution, please consider leaving me feedback, suggestions or questions and within reason, I will do my best to respond within a day.
I don't know how to override the apply method in the companion object (if that is even possible) but you could also use a special type for upper case strings:
class UpperCaseString(s: String) extends Proxy {
val self: String = s.toUpperCase
}
implicit def stringToUpperCaseString(s: String) = new UpperCaseString(s)
implicit def upperCaseStringToString(s: UpperCaseString) = s.self
case class A(val s: UpperCaseString)
println(A("hello"))
The above code outputs:
A(HELLO)
You should also have a look at this question and it's answers: Scala: is it possible to override default case class constructor?
For the people reading this after April 2017: As of Scala 2.12.2+, Scala allows overriding apply and unapply by default. You can get this behavior by giving -Xsource:2.12 option to the compiler on Scala 2.11.11+ as well.
It works with var variables:
case class A(var s: String) {
// Conversion
s = s.toUpperCase
}
This practice is apparently encouraged in case classes instead of defining another constructor. See here.. When copying an object, you also keep the same modifications.
Another idea while keeping case class and having no implicit defs or another constructor is to make the signature of apply slightly different but from a user perspective the same.
Somewhere I have seen the implicit trick, but can´t remember/find which implicit argument it was, so I chose Boolean here. If someone can help me out and finish the trick...
object A {
def apply(s: String)(implicit ev: Boolean) = new A(s.toLowerCase)
}
case class A(s: String)
I faced the same problem and this solution is ok for me:
sealed trait A {
def s:String
}
object A {
private case class AImpl(s:String)
def apply(s:String):A = AImpl(s.toUpperCase)
}
And, if any method is needed, just define it in the trait and override it in the case class.
If you're stuck with older scala where you cant override by default or you dont want to add the compiler flag as #mehmet-emre showed, and you require a case class, you can do the following:
case class A(private val _s: String) {
val s = _s.toUpperCase
}
As of 2020 on Scala 2.13, the above scenario of overriding a case class apply method with same signature works totally fine.
case class A(val s: String)
object A {
def apply(s: String) = new A(s.toUpperCase)
}
the above snippet compiles and runs just fine in Scala 2.13 both in REPL & non-REPL modes.
I think this works exactly how you want it to already. Here's my REPL session:
scala> case class A(val s: String)
defined class A
scala> object A {
| def apply(s: String) = new A(s.toUpperCase)
| }
defined module A
scala> A("hello")
res0: A = A(HELLO)
This is using Scala 2.8.1.final