Aspects precedence - aspectj

Short and simple question, but I didn't find the answer in documentation. Is it possible to declare precedence between aspects when aspects are defined in different jars (using aspectj syntax)?

Related

libraries for external DSL evaluation in Scala

What are the steps required for evaluating an external DSL in scala, and what libraries are available for these?
After digging around i am able to create an AST out of case classes using parser combinators. What are the next steps in the process? I looked at kiama (https://code.google.com/p/kiama/) but it seems unclear from documentation ( may be due to my limited langauage processing knowledge ) how to maintain symbol tables, how to bind actions to dsl statements etc.
I agree that it would be good to have more tutorial-style documentation for common language processing tasks in Kiama. We are working on it, but I have nothing concrete to report at the moment.
In the meantime, all I can offer is the examples in the Kiama distribution. In particular, the minijava example is a reasonably accessible compiler for a non-trivial subset of Java. It does name and type analysis (see SemanticAnalysis.scala) and generates JVM bytecode. The semantic analysis uses a simple model of passing around an environment from declarations to uses of names. Feel free to contact us here or on the Kiama mailing list if you have specific questions about how the example works.
The Oberon-0 example is also a complete compiler from an imperative language to C, including semantic analysis.

Could APL be implemented in Scala as a DSL?

There is a old computer language called APL. Could this be implemented in Scala as a DSL?
http://en.wikipedia.org/wiki/APL_%28programming_language%29
Someone could probably give a better answer than this, but this is my initial thought:
A Scala DSL should in theory be able to implement any programming language because it could build up an arbitrary structure representing the syntax, and then evaluate that.
A Scala DSL could not exactly replicate APL syntax for many reasons, one of which is that
'single quotes'
can denote a string in APL, but not in Scala. Also (from the wikipedia page)
×/2 3 4
wouldn't be valid Scala.
I don't know how close you could get, though...
A Javascript implementation exists here: https://github.com/ngn/apl

Convert Scala AST to source code

Given a Scala AST, is there a way to generate Scala source code?
I'm looking into ways to autogenerate Scala source by parsing/analyzing other Scala source. Any tips would be appreciated!
I have been successfully using Scala-Refactoring by Mirko Stocker for this task.
For synthetically constructing ASTs, it relies strongly on the existing Tree DSL of Scala's NSC.
Although the code is a bit messy, you can find an example usage in my project ScalaCollider-UGens.
I have also come across a very useful class by Johannes Rudolph.
See our DMS Software Reengineering Toolkit.
DMS provides a complete ecosystem for parsing/analyzing/optimizing/transforming source code in many languages. It achieves this by provide generic machinery for these tasks as its core capabilities, and specializing those according to explicitly supplied language definitions ("front ends"). DMS has front ends for many languages (C, C++, C#, Java, COBOL, ...) that have been used in anger, and a process for defining others very quickly.
We work on expanding the language set more or less continuously. DMS already has parts of a Scala front end implemented, and we know how to finish it based on the other 30+ front ends we have built, with special emphasis on knowledge of Java.

How would one do dependency injection in scala?

I'm still at the beginning in learning scala in addition to java and i didn't get it how is one supposed to do DI there? can or should i use an existing DI library, should it be done manually or is there another way?
Standard Java DI frameworks will usually work with Scala, but you can also use language constructs to achieve the same effect without external dependencies.
A new dependency injection library specifically for Scala is Dick Wall's SubCut.
Whereas the Jonas Bonér article referenced in Dan Story's answer emphasizes compile-time bound instances and static injection (via mix-ins), SubCut is based on runtime initialization of immutable modules, and dynamic injection by querying the bound modules by type, string names, or scala.Symbol names.
You can read more about the comparison with the Cake pattern in the GettingStarted document.
Dependency Injection itself can be done without any tool, framework or container support. You only need to remove news from your code and move them to constructors. The one tedious part that remains is wiring the objects at "the end of the world", where containers help a lot.
Though with Scala's 2.10 macros, you can generate the wiring code at compile-time and have auto-wiring and type-safety.
See the Dependency Injection in Scala Guide
A recent project illustrates a DI based purely on constructor injection: zalando/grafter
What's wrong with constructor injection again?
There are many libraries or approaches for doing dependency injection in Scala. Grafter goes back to the fundamentals of dependency injection by just using constructor injection: no reflection, no xml, no annotations, no inheritance or self-types.
Then, Grafter add to constructor injection just the necessary support to:
instantiate a component-based application from a configuration
fine-tune the wiring (create singletons)
test the application by replacing components
start / stop the application
Grafter is targeting every possible application because it focuses on associating just 3 ideas:
case classes and interfaces for components
Reader instances and shapeless for the configuration
tree rewriting and kiama for everything else!
I haven't done so myself, but most DI frameworks work at the bytecode level (AFAIK), so it should be possible to use them with any JVM language.
Previous posts covered the techniques. I wanted to add a link to Martin Odersky's May 2014 talk on the Scala language objectives. He identifies languages that "require" a DI container to inject dependencies as poorly implemented. I agree with this personally, but it is only an opinion. It does seem to indicate that including a DI dependency in your Scala project is non-idiomatic, but again this is opinion. Practically speaking, even with a language designed to inject dependencies natively, there is a certain amount of consistency gained by using a container. It is worth considering both points of view for your purposes.
https://youtu.be/ecekSCX3B4Q?t=1154
I would suggest you to try distage (disclaimer: I'm the author).
It allows you to do much more than a typical DI does and has many unique traits:
distage supports multiple configurations (e.g. you may run your app
with different sets of component implementations),
distage allows you to correctly share dependencies across your tests
and easily run same tests for different implementations of your
components,
distage supports roles so you may run multiple services within the same process sharing dependencies between them,
distage does not depend on scala-reflect
(but supports all the necessary features of Scala typesystem, like
higher-kinded types).
You may also watch our talk at Functional Scala 2019 where we've discussed and demonstrated some important capabiliteis of distage.
I have shown how I created a very simple functional DI container in scala using 2.10 here.
In addition to the answer of Dan Story, I blogged about a DI variant that also uses language constructs only but is not mentioned in Jonas's post: Value Injection on Traits (linking to web.archive.org now).
This pattern is working very well for me.

What are the key differences between Scala and Groovy? [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 7 years ago.
Improve this question
On the surface Groovy and Scala look pretty similar, aside from Scala being statically typed, and Groovy dynamic.
What are the other key differences, and advantages each have over the other?
How similar are they really?
Is there competition between the two?
If so, who do you think will win in the long run?
They're both object oriented languages for the JVM that have lambdas and closures and interoperate with Java. Other than that, they're extremely different.
Groovy is a "dynamic" language in not only the sense that it is dynamically typed but that it supports dynamic meta-programming.
Scala is a "static" language in that it is statically typed and has virtually no dynamic meta-programming beyond the awkward stuff you can do in Java. Note, Scala's static type system is substantially more uniform and sophisticated than Java's.
Groovy is syntactically influenced by Java but semantically influenced more by languages like Ruby.
Scala is syntactically influenced by both Ruby and Java. It is semantically influenced more by Java, SML, Haskell, and a very obscure OO language called gBeta.
Groovy has "accidental" multiple dispatch due to the way it handles Java overloading.
Scala is single dispatch only, but has SML inspired pattern matching to deal with some of the same kinds of problems that multiple dispatch is meant to handle. However, where multiple dispatch can only dispatch on runtime type, Scala's pattern matching can dispatch on runtime types, values, or both. Pattern matching also includes syntactically pleasant variable binding. It's hard to overstress how pleasant this single feature alone makes programming in Scala.
Both Scala and Groovy support a form of multiple inheritance with mixins (though Scala calls them traits).
Scala supports both partial function application and currying at the language level, Groovy has an awkward "curry" method for doing partial function application.
Scala does direct tail recursion optimization. I don't believe Groovy does. That's important in functional programming but less important in imperative programming.
Both Scala and Groovy are eagerly evaluated by default. However, Scala supports call-by-name parameters. Groovy does not - call-by-name must be emulated with closures.
Scala has "for comprehensions", a generalization of list comprehensions found in other languages (technically they're monad comprehensions plus a bit - somewhere between Haskell's do and C#'s LINQ).
Scala has no concept of "static" fields, inner classes, methods, etc - it uses singleton objects instead. Groovy uses the static concept.
Scala does not have built in selection of arithmetic operators in quite the way that Groovy does. In Scala you can name methods very flexibly.
Groovy has the elvis operator for dealing with null. Scala programmers prefer to use Option types to using null, but it's easy to write an elvis operator in Scala if you want to.
Finally, there are lies, there are damn lies, and then there are benchmarks. The computer language benchmarks game ranks Scala as being between substantially faster than Groovy (ranging from twice to 93 times as fast) while retaining roughly the same source size. benchmarks.
I'm sure there are many, many differences that I haven't covered. But hopefully this gives you a gist.
Is there a competition between them? Yes, of course, but not as much as you might think. Groovy's real competition is JRuby and Jython.
Who's going to win? My crystal ball is as cracked as anybody else's.
scala is meant to be an oo/functional hybrid language and is very well planned and designed. groovy is more like a set of enhancements that many people would love to use in java.
i took a closer look at both, so i can tell :)
neither of them is better or worse than the other. groovy is very good at meta-programming, scala is very good at everything that does not need meta-programming, so...i tend to use both.
Scala has Actors, which make concurrency much easier to implement. And Traits which give true, typesafe multiple inheritance.
You've hit the nail on the head with the static and dynamic typing. Both are part of the new generation of dynamic languages, with closures, lambda expressions, and so on. There are a handful of syntactic differences between the two as well, but functionally, I don't see a huge difference between Groovy and Scala.
Scala implements Lists a bit differently; in Groovy, pretty much everything is an instance of java.util.List, whereas Scala uses both Lists and primitive arrays. Groovy has (I think) better string interpolation.
Scala is faster, it seems, but the Groovy folks are really pushing performance for the 2.0 release. 1.6 gave a huge leap in speed over the 1.5 series.
I don't think that either language will really 'win', as they target two different classes of problems. Scala is a high-performance language that is very Java-like without having quite the same level of boilerplate as Java. Groovy is for rapid prototyping and development, where speed is less important than the time it takes for programmers to implement the code.
Scala has a much steeper learning curve than Groovy. Scala has much more support for functional programming with its pattern matching and tail based recursion, meaning more tools for pure FP.
Scala also has dynamica compilation and I have done it using twitter eval lib (https://github.com/twitter/util ). I kept scala code in a flat file(without any extension) and using eval created scala class at run time.
I would say scala is meta programming and has feature of dynamic complication