I try to start unit testing a mid size Xtext project.
The generator currently relies on some external resources that I would like to mock inside my test. Thus, I inject the needed object via #Inject into the Generator class.
e.g in pseudocode:
class MyGenerator implements IGenerator{
#Inject
ExternalResourceInterface resourceInterface;
...
}
I create the actual binding inside the languages RuntimeModule:
class MyRuntimeModule{
...
#Override
public void configure(Binder binder) {
super.configure(binder);
binder.bind(ExternalResourceInterface .class).to(ExternalResourceProductionAcess.class);
}
...
}
This works fine for the production environment.
However, in the generator test case, I would like to replace the binding with my mocked version, so that the following call to the CompilationTestHelper uses the mock:
compiler.assertCompilesTo(dsl, expectedJava);
Question:
Where do I tell guice/Xtext to bind the injection to the mock?
If you annotate your test case with RunWith and InjectWith, your test class will be injected via a specific IInjectorProvider implementation.
If that injector provider uses a custom module (like you have shown), the test case gets injected using that configuration. However, you have to make sure you use this injector throughout the test code (e.g. you do not rely on a registered injector, etc.).
Look for the following code as an example (have not compiled it, but this is the base structure you have to follow):
#RunWith(typeof(XtextRunner))
#InjectWith(typeof(LanguageInjectorProvider))
public class TestClass {
#Inject
CompilationTestHelper compiler
...
}
Team lead wants to writing some business methods inside of Entity class, such as following:
#Entity
public class SomeProcess extends SomeProcessBase implements Serializable {
#SomeInterceptor
public void start() {
//do some business logics
}
#SomeInterceptor
public void abort() {
// do some business logics
}
...
}
Can we use CDI interceptor mechanism to intercept non-contextual entity objects?
The answer is NO.
And the next direction for this is moving to BCEL.
After a few days study, i finally finished with BCEL to achieve method intercepting.
Rough Solution:
1. Using java instrument framework to transform byte code at class load time. Click Reference.
2. Transform byte code with a bytecode manipulation lib, such as ASM, Javassist, or BCEL. While transforming bytecode, manually writing target java file, and using some tool class provided by those libs to generate java code which can create byte codes from the target class file, after some encapsulation and boxing-and-unboxing and etc, then transform byte code part would be ready. BCEL provides BCELifier class to generate those java code, and the bytecode manipulation also mentioned some other tools for the other libs.
3. Try Lifecycle open source project on github.com, which provides Java based Lifecycle description language, it's kind of using Java to describe UML state machine with meta-driven style. And for method intercepting, please refer to BCELClassFileTransformer.java
4. Contact me for more help.
I have xtext language which has an external compiler for context checking. I would like show the errors from the compiler in the editor. I’ve read somewhere that I have to implement a IResourceValidator. How do I do that?
You can just use bindIResourceValidator() to bind your own implementation.
For example, like this:
public Class<? extends IResourceValidator> bindIResourceValidator() {
return MyValidator.class;
}
Keep in mind, you'll use the original validator provided by Xtext
I'm using native session library to replace the built in session library in CI. I need to extend the class but when I drop in MY_Session.php, CI reverts back to the old /system/libraries/Session.php.
How to I extend a class that's replaced a core CI class like Session.php?
Simply by naming your class files identically to a native library will
cause CodeIgniter to use it instead of the native one. To use this
feature you must name the file and the class declaration exactly the
same as the native library. For example, to replace the native Email
library you'll create a file named application/libraries/Email.php
-user guide
then call it
class MY_Email extends CI_Email {
public function __construct()
{
parent::__construct();
}
}
Loading Your Sub-class:
$this->load->library('email');
EDIT
Try this:
Just load your new library (the one doing the extending):
Then, let's say we have Session.php and Mysession.php
<?php
load_class('session', false);
class Mysession extends Session {
//your code
}
You don't need the MY_ name tag still, I think you want to reserve that for it's original intended purpose to avoid confusion.
.. else just use an include() or require() :P
GWT.create() is the reflection equivalent in GWT,
But it take only class literals, not fully qualified String for the Class name.
How do i dynamically create classes with Strings using GWT.create()?
Its not possible according to many GWT forum posts but how is it being done in frameworks like Rocket-GWT (http://code.google.com/p/rocket-gwt/wiki/Ioc) and Gwittir (http://code.google.com/p/gwittir/wiki/Introspection)
It is possible, albeit tricky. Here are the gory details:
If you only think as GWT as a straight Java to JS, it would not work. However, if you consider Generators - Special classes with your GWT compiler Compiles and Executes during compilation, it is possible. Thus, you can generate java source while even compiling.
I had this need today - Our system deals with Dynamic resources off a Service, ending into a String and a need for a class. Here is the solutuion I've came up with - btw, it works under hosted, IE and Firefox.
Create a GWT Module declaring:
A source path
A Generator (which should be kept OUTSIDE the package of the GWT Module source path)
An interface replacement (it will inject the Generated class instead of the interface)
Inside that package, create a Marker interface (i call that Constructable). The Generator will lookup for that Marker
Create a base abstract class to hold that factory. I do this in order to ease on the generated source code
Declare that module inheriting on your Application.gwt.xml
Some notes:
Key to understanding is around the concept of generators;
In order to ease, the Abstract base class came in handy.
Also, understand that there is name mandling into the generated .js source and even the generated Java source
Remember the Generator outputs java files
GWT.create needs some reference to the .class file. Your generator output might do that, as long as it is referenced somehow from your application (check Application.gwt.xml inherits your module, which also replaces an interface with the generator your Application.gwt.xml declares)
Wrap the GWT.create call inside a factory method/singleton, and also under GWT.isClient()
It is a very good idea to also wrap your code-class-loading-calls around a GWT.runAsync, as it might need to trigger a module load. This is VERY important.
I hope to post the source code soon. Cross your fingers. :)
Brian,
The problem is GWT.create doen't know how to pick up the right implementation for your abstract class
I had the similar problem with the new GWT MVP coding style
( see GWT MVP documentation )
When I called:
ClientFactory clientFactory = GWT.create(ClientFactory.class);
I was getting the same error:
Deferred binding result type 'com.test.mywebapp.client.ClientFactory' should not be abstract
All I had to do was to go add the following lines to my MyWebapp.gwt.xml file:
<!-- Use ClientFactoryImpl by default -->
<replace-with class="com.test.mywebapp.client.ClientFactoryImpl">
<when-type-is class="com.test.mywebapp.client.ClientFactory"/>
</replace-with>
Then it works like a charm
I ran into this today and figured out a solution. The questioner is essentially wanting to write a method such as:
public <T extends MyInterface> T create(Class<T> clz) {
return (T)GWT.create(clz);
}
Here MyInterface is simply a marker interface to define the range of classes I want to be able to dynamically generate. If you try to code the above, you will get an error. The trick is to define an "instantiator" such as:
public interface Instantiator {
public <T extends MyInterface> T create(Class<T> clz);
}
Now define a GWT deferred binding generator that returns an instance of the above. In the generator, query the TypeOracle to get all types of MyInterface and generate implementations for them just as you would for any other type:
e.g:
public class InstantiatorGenerator extends Generator {
public String generate(...) {
TypeOracle typeOracle = context.getTypeOracle();
JClassType myTYpe= typeOracle.findType(MyInterface.class.getName());
JClassType[] types = typeOracle.getTypes();
List<JClassType> myInterfaceTypes = Collections.createArrayList();
// Collect all my interface types.
for (JClassType type : types) {
if (type.isInterface() != null && type.isAssignableTo(myType)
&& type.equals(myType) == false) {
myInterfaceTypes.add(type);
}
for (JClassType nestedType : type.getNestedTypes()) {
if (nestedType.isInterface() != null && nestedType.isAssignableTo(myType)
&& nestedType.equals(myTYpe) == false) {
myInterfaceTypes.add(nestedType);
}
}
}
for (JClassType jClassType : myInterfaceTypes) {
MyInterfaceGenerator generator = new MyInterfaceGenerator();
generator.generate(logger, context, jClassType.getQualifiedSourceName());
}
}
// Other instantiator generation code for if () else if () .. constructs as
// explained below.
}
The MyIntefaceGenerator class is just like any other deferred binding generator. Except you call it directly within the above generator instead of via GWT.create. Once the generation of all known sub-types of MyInterface is done (when generating sub-types of MyInterface in the generator, make sure to make the classname have a unique pattern, such as MyInterface.class.getName() + "_MySpecialImpl"), simply create the Instantiator by again iterating through all known subtypes of MyInterface and creating a bunch of
if (clz.getName().equals(MySpecialDerivativeOfMyInterface)) { return (T) new MySpecialDerivativeOfMyInterface_MySpecialImpl();}
style of code. Lastly throw an exception so you can return a value in all cases.
Now where you'd call GWT.create(clz); instead do the following:
private static final Instantiator instantiator = GWT.create(Instantiator.class);
...
return instantiator.create(clz);
Also note that in your GWT module xml, you'll only define a generator for Instantiator, not for MyInterface generators:
<generate-with class="package.rebind.InstantiatorGenerator">
<when-type-assignable class="package.impl.Instantiator" />
</generate-with>
Bingo!
What exactly is the question - i am guessing you wish to pass parameters in addition to the class literal to a generator.
As you probably already know the class literal passed to GWT.create() is mostly a selector so that GWT can pick and execute a generator which in the end spits out a class. The easist way to pass a parameter to the generator is to use annotations in an interface and pass the interface.class to GWT.create(). Note of course the interface/class must extend the class literal passed into GWT.create().
class Selector{
}
#Annotation("string parameter...")
class WithParameter extends Selector{}
Selector instance = GWT.create( WithParameter.class )
Everything is possible..although may be difficult or even useless. As Jan has mentioned you should use a generator to do that. Basically you can create your interface the generator code which takes that interface and compile at creation time and gives you back the instance. An example could be:
//A marker interface
public interface Instantiable {
}
//What you will put in GWT.create
public interface ReflectionService {
public Instantiable newInstance(String className);
}
//gwt.xml, basically when GWT.create finds reflectionservice, use reflection generator
<generate-with class="...ReflectionGenerator" >
<when-type-assignable class="...ReflectionService" />
</generate-with>
//In not a client package
public class ReflectionGenerator extends Generator{
...
}
//A class you may instantiate
public class foo implements Instantiable{
}
//And in this way
ReflectionService service = GWT.create(ReflectionService.class);
service.newInstance("foo");
All you need to know is how to do the generator. I may tell you that at the end what you do in the generator is to create Java code in this fashion:
if ("clase1".equals(className)) return new clase1();
else if ("clase2".equals(className)) return new clase2();
...
At the final I thought, common I can do that by hand in a kind of InstanceFactory...
Best Regards
I was able to do what I think you're trying to do which is load a class and bind it to an event dynamically; I used a Generator to dynamically link the class to the event. I don't recommend it but here's an example if it helps:
http://francisshanahan.com/index.php/2010/a-simple-gwt-generator-example/
Not having looked through the code of rocket/gwittir (which you ought to do if you want to find out how they did it, it is opensource after all), i can only guess that they employ deferred binding in such a way that during compile time, they work out all calls to reflection, and statically generate all the code required to implement those call. So during run-time, you cant do different ones.
What you're trying to do is not possible in GWT.
While GWT does a good job of emulating Java at compile time the runtime is of course completely different. Most reflection is unsupported and it is not possible to generate or dynamically load classes at runtime.
I had a brief look into code for Gwittir and I think they are doing their "reflection stuff" at compile time. Here: http://code.google.com/p/gwittir/source/browse/trunk/gwittir-core/src/main/java/com/totsp/gwittir/rebind/beans/IntrospectorGenerator.java
You might be able to avoid the whole issue by doing it on the server side. Say with a service
witch takes String and returns some sort of a serializable super type.
On the server side you can do
return (MySerializableType)Class.forName("className").newInstance();
Depending on your circumstances it might not be a big performance bottleneck.