Firstly, I'm quite new to Matlab.
I am currently trying to do a definite integral with respect to y of a particular function. The function that I want to integrate is
(note that the big parenthesis is multiplying with the first factor - I can't get the latex to not make it look like power)
I have tried plugging the above integral into Desmos and it worked as intended. My plan was to vary the value of x and y and will be using for loop via matlab.
However, after trying to use the int function to calculate the definite integral with the code as follow:
h = 5;
a = 2;
syms y
x = 3.8;
p = 2.*x.^2+2.*a.*y;
q = x.^2+y.^2;
r = x.^2+a.^2;
f = (-1./sqrt(1-(p.^2./(4.*q.*r)))).*(2.*sqrt(q).*sqrt(r).*2.*a-p.*2.*y.*sqrt(r)./sqrt(q))./(4.*q.*r);
theta = int(f,y,a+0.01,h) %the integral is undefined at y=2, hence the +0.01
the result is not quite as expected
theta =
int(-((8*461^(1/2)*(y^2 + 361/25)^(1/2))/5 - (461^(1/2)*y*(8*y + 1444/25))/(5*(y^2 + 361/25)^(1/2)))/((1 - (4*y + 722/25)^2/((1844*y^2)/25 + 665684/625))^(1/2)*((1844*y^2)/25 + 665684/625)), y, 21/10, 5)
After browsing through various posts, the common mistake is the undefined interval but the +0.01 should have fixed it. Any guidance on what went wrong is much appreciated.
The Definite Integrals example in the docs shows exactly this type of output when a closed form cannot be computed. You can approximate it numerically using vpa, i.e.
F = int(f,y,a,h);
theta = vpa(F);
Or you can do a numerical computation directly
theta = vpaintegral(f,y,a,h);
From the docs:
The vpaintegral function is faster and provides control over integration tolerances.
I have a system of 5 ODEs with nonlinear terms involved. I am trying to vary 3 parameters over some ranges to see what parameters would produce the necessary behaviour that I am looking for.
The issue is I have written the code with 3 for loops and it takes a very long time to get the output.
I am also storing the parameter values within the loops when it meets a parameter set that satisfies an ODE event.
This is how I have implemented it in matlab.
function [m,cVal,x,y]=parameters()
b=5000;
q=0;
r=10^4;
s=0;
n=10^-8;
time=3000;
m=[];
cVal=[];
x=[];
y=[];
val1=0.1:0.01:5;
val2=0.1:0.2:8;
val3=10^-13:10^-14:10^-11;
for i=1:length(val1)
for j=1:length(val2)
for k=1:length(val3)
options = odeset('AbsTol',1e-15,'RelTol',1e-13,'Events',#eventfunction);
[t,y,te,ye]=ode45(#(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)]),0:time,[b,q,s,r,n],options);
if length(te)==1
m=[m;val1(i)];
cVal=[cVal;val2(j)];
x=[x;val3(k)];
y=[y;ye(1)];
end
end
end
end
Is there any other way that I can use to speed up this process?
Profile viewer results
I have written the system of ODEs simply with the a format like
function s=systemFunc(t,y,p)
s= zeros(2,1);
s(1)=f*y(1)*(1-(y(1)/k))-p(1)*y(2)*y(1)/(p(2)*y(2)+y(1));
s(2)=p(3)*y(1)-d*y(2);
end
f,d,k are constant parameters.
The equations are more complicated than what's here as its a system of 5 ODEs with lots of non linear terms interacting with each other.
Tommaso is right. Preallocating will save some time.
But I would guess that there is fundamentally not a lot you can do since you are running ode45 in a loop. ode45 itself may be the bottleneck.
I would suggest you profile your code to see where the bottleneck is:
profile on
parameters(... )
profile viewer
I would guess that ode45 is the problem. Probably you will find that you should actually focus your time on optimizing the systemFunc code for performance. But you won't know that until you run the profiler.
EDIT
Based on the profiler output and additional code, I see some things that will help
It seems like the vectorization of your values is hurting you. Instead of
#(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)])
try
#(t,y)systemFunc(t,y,val1(i),val2(j),val3(k))
where your system function is defined as
function s=systemFunc(t,y,p1,p2,p3)
s= zeros(2,1);
s(1)=f*y(1)*(1-(y(1)/k))-p1*y(2)*y(1)/(p2*y(2)+y(1));
s(2)=p3*y(1)-d*y(2);
end
Next, note that you don't have to preallocate space in the systemFunc, just combine them in the output:
function s=systemFunc(t,y,p1,p2,p3)
s = [ f*y(1)*(1-(y(1)/k))-p1*y(2)*y(1)/(p2*y(2)+y(1)),
p3*y(1)-d*y(2) ];
end
Finally, note that ode45 is internally taking about 1/3 of your runtime. There is not much you will be able to do about that. If you can live with it, I would suggest increasing your 'AbsTol' and 'RelTol' to more reasonable numbers. Those values are really small, and are making ode45 run for a really long time. If you can live with it, try increasing them to something like 1e-6 or 1e-8 and see how much the performance increases. Alternatively, depending on how smooth your function is, you might be able to do better with a different integrator (like ode23). But your mileage will vary based on how smooth your problem is.
I have two suggestions for you.
Preallocate the vectors in which you store your results and use an
increasing index to populate them into each iteration.
Since the options you use are always the same, instantiate then
outside the loop only once.
Final code:
function [m,cVal,x,y] = parameters()
b = 5000;
q = 0;
r = 10^4;
s = 0;
n = 10^-8;
time = 3000;
options = odeset('AbsTol',1e-15,'RelTol',1e-13,'Events',#eventfunction);
val1 = 0.1:0.01:5;
val1_len = numel(val1);
val2 = 0.1:0.2:8;
val2_len = numel(val2);
val3 = 10^-13:10^-14:10^-11;
val3_len = numel(val3);
total_len = val1_len * val2_len * val3_len;
m = NaN(total_len,1);
cVal = NaN(total_len,1);
x = NaN(total_len,1);
y = NaN(total_len,1);
res_offset = 1;
for i = 1:val1_len
for j = 1:val2_len
for k = 1:val3_len
[t,y,te,ye] = ode45(#(t,y)systemFunc(t,y,[val1(i),val2(j),val3(k)]),0:time,[b,q,s,r,n],options);
if (length(te) == 1)
m(res_offset) = val1(i);
cVal(res_offset) = val2(j);
x(res_offset) = val3(k);
y(res_offset) = ye(1);
end
res_offset = res_offset + 1;
end
end
end
end
If you only want to preserve result values that have been correctly computed, you can remove the rows containing NaNs at the bottom of your function. Indexing on one of the vectors will be enough to clear everything:
rows_ok = ~isnan(y);
m = m(rows_ok);
cVal = cVal(rows_ok);
x = x(rows_ok);
y = y(rows_ok);
In continuation of the other suggestions, I have 2 more suggestions for you:
You might want to try with a different solver, ODE45 is for non-stiff problems, but from the looks of it, it might seem like your problem could be stiff (parameters have a different order of magnitude). Try for instance with the ode23s method.
Secondly, without knowing which event you are looking for, maybe it is possible for you to use a logarithmic search rather than a linear one. e.g. the Bisection method. This will severely cut down on the number of times you have to solve the equation.
So on this problem it seems pretty straight forward we are given
mean of x = 10,281 and sigma of x = 4112.4
We are asked to determine P(X<15,000)
Now I thought the code for this in matlab should be super straightforward
mu = 10281
sigma = 4112.4
p = logncdf(15000,10281,4112.4)
However this gives
p = .0063
The given answer is .8790 and just looking at p you can tell it is wrong because we are at 15000 which is over the mean which means it should be above .5. What is the deal with this function?
I saw somewhere you might need to take the exp(15000) for x in the function that results in a probability of 1 which is too high.
Any pointers would be much appreciated
%If X is lognormally distributed with parameters:-
mu = 10281;
sigma = 4112.4;
%then log(X) is normally distributed with following parameters:
mew_actual = log((mu^2)/sqrt(sigma^2+mu^2));
sigma_actual = sqrt(log((sigma^2)/(mu^2) +1));
Now you can use either of the following to compute CDF:-
p = cdf('Normal',log(15000),mew_actual,sigma_actual)
or
p=logncdf(15000,mew_actual,sigma_actual)
which gives 0.8796
(which I believe is the correct answer)
The answer given to you is 0.8790 because if you solve the question by hand, you'll get something like: z = 1.172759 and when you look this value in the table, you can only find z = 1.17(without the rest of decimal places) and for which φ(z)=0.8790.
You can verify the exact answer using this calculator. The related screenshot is attached below:
I've got a porblem. I'm new in Octave need to solve these equations in this format:
-397.95 = min(k1*rate + k2);
776.37 = max(k1*rate + k2);
where rate is my row vector at size 10000. All I need is octave function which can deal with roots which are in other function (in my max and min). I know, that this question is a little bit mathematical, but I can't get the right easy function for solving this...
Thank you for answer
It looks like you need to use an optimization to minimise a cost function which would look like:
function y = f(x)
% k1 is x(1), k2 is x(2)
rate = ...
y = [min(x(1)*rate + x(2))+397.95; max(x(1)*rate+x(2))-776.37]
end
You can then use optimization functions such as fminsearch or other (from the optim package). The idea is to try and minimize your cost function, i.e. get y towards 0. It might be a good idea to use abs in your function to avoid issue with negative numbers.
It's easy to see that the constraints for this problem are:
k1 * rate + k2 >= -397.95
and
k1 * rate + k2 <= 776.37
Since larger values of k1 give a larger variance in the result of this equation, your objective is to maximize k1 subject to these constraints (equivalently minimize -k1).
You can now run this as a simple linear program:
height = size(rate,1);
c = [-1;0];
A = [rate',ones(height,1); rate',ones(height,1)];
b = [-397.95*ones(height,1); 766.37*ones(height,1)];
lb = [0;-Inf];
ub = [Inf; Inf];
ctype = [repmat("L",height,1); repmat("U",height,1)];
k = glpk (c,A,b,lb,ub,ctype)
k1 = k(1);
k2 = k(2);
EDIT : I missed that rate was a row vector. I've transposed it appropriately
Actually since there are only two variables, this can be solved directly. Assuming k1 is positive (No reason not to make k1 positive since flipping the sign doesn't really change the problem since k2 can be shifted appropriately), then we have k1*max(rate) + k2 = 776.37 and k1*min(rate) + k2 = -397.95
So
k1*(max(rate) - min(rate)) = 776.37 - (-397.95)
Then we can solve for k1 as
k1 = (776.37 - (-397.95))/(max(rate) - min(rate))
And then k2 can be found as
k2 = 776.37 - k1 * max(rate)
Just having some issues with variable precision in matlab..
I have the code:
x = 0.1;
syms y;
S = solve(x+1==(1+y)/(1-y),y);
y = double(S);
val = abs(((2^2)*(y^2))/(2*(y-1)^2))
But val is always rounded off.
I should be getting val = 0.0049999 but instead I am getting val = 0.0050.
Anyone have any idea why?
Thanks.
EDIT: Adding extra code
x = 0.1;
syms y;
S = solve(x+1==(1+y)/(1-y),y);
y = double(S);
val = abs(((2^2)*(y^2))/(2*(y-1)^2))
sprintf('%22.20f',val)
for i=1:2
val= val+((2^i)*(y^i))/(i*(y-1)^i);
sprintf('%22.20f',val)
end
The first sprintf works and shows correct rounding, however the second doesnt!!
It has to do with the floating-point representation and how Matlab displays such numbers for readability. If you add this line to the end of your code:
sprintf('%22.20f',val)
you'll get:
ans =
0.00499999999999999924
Edit
Even though it technically deals with Python, this website offers a brief and concise overview on the limitations of floating-point representations.
Is it possible that you merely set your preferences for displaying numbers to short rather than long? It would help if you eliminated that as a possibility.