I'm about to prepare a deployment specification for the Websphere MQ production environment. As always I hate reinventing the wheel hence the question:
Is there an article, specififaction of best practices when it comes to deploying and maintaining the Webshpere MQ production environment?
Here are more specific doubts of mine:
Configuration versioning (MQSC, dmpmqcfg, etc).
Deploying new objects (MQSC or manual instructions?)
Deployment automation (maybe basing on the diff of dmpmqcfg?).
Deploying and versioning configuration alterations.
Currently I am simply creating MQ objects manually and versioning the output of dmpmqcfg. However, in a while there are going to be too many deployments to handle it like this.
That's an extremely broad question so I'll try to respond before a moderator deletes it. :-)
The answer depends on many things such as whether MQ clusters are in use, the approaches to high availability and disaster recovery, the security requirements, whether the QMgrs are configured as dedicated or shared infrastructure, etc. However, there are a few patterns that I follow in almost all cases, including non-Production. This is because things like monitoring and security tend to get dropped at deployment time if not tested in Dev and don't work as expected in Prod.
I use a script to create my QMgrs in Production to insure that basics like generating the X.509 certificate (or CSR) is always done according to standards, that any exits or exit parm files are present, that certain SupportPac executables (like q) are present in /opt/mqm/bin, circular queues, etc. It also checks for negative factors such as GSKit not being installed.
I have a baseline script that is run against all QMgrs. This script sets up the DLQ, any queues for monitoring agents, enables events as required, sets up system services, trigger monitors, listeners, etc. The exception is B2B gateway QMgrs which are handled in a class all their own and have very specific configurations not used on the internal network.
cluster.
I have several classes of QMgr with specific configuration requirements. These include cluster repositories (where primary and secondary are distinct sub-types), service-provider QMgrs, and service consumer QMgrs. These all have secondary scripts run against them.
I have scripts per-cluster to join or suspend a QMgr in cases where clustering is used (which for me is almost 100% since v7.1).
These set up a QMgr's infrastructure. Then I maintain scripts for each application. So for example, if there's a Payroll app, I'll have queues and possibly topics with names containing a PAY node such as PAY.EMPLOYEE.UPDT.REQ.V032.PRD. Corresponding to that will be a single script for all PAY.** queues. Used to be one for setmqaut commands too, but these are now in the same script as the objects. I only ever have one version of the script and keep a history of changes in the script. This way when I need to recreate a QMgr, I just run all the scripts for it. Similarly, if I need to deploy the PAY objects on another QMgr, I just copy the script to that server.
When defining objects for clusters, I always do a DEFINE NOREPLACE that contains all the run-time attributes such as whether the queue is enabled in the cluster. The queue is always defined as disabled in the cluster and for triggering but because I use NOREPLACE re-running the script doesn't change whatever state it has in, say, a month. Those things that are configuration and not run-time, such as the description, are handled in an ALTER immediately after the DEFINE and these are updated each time the script is run. There's an article on this here.
Finally, the scripts I use are of the self-executing, self-documenting variety. For example, many people put all the MQSC commands into a script then do something like:
runmqsc < payroll.mqsc > payroll.out
TONS of problems here. The main one is that it relies on the operator to know a lot and execute the script right all the time. For example, suppose (s)he forgets to capture the output? Or overwrites a previous output? Or doesn't get STDERR because (s)he needs to do the 2>&1 at the end and doesn't know redirection that well?
So my scripts are all written in ksh handle all the capturing of output, complete with time and date stamping and STDERR, can freely mix MQSC with OS commands, etc. All you do is go to the scripts directory for that QMgr and . ./*ksh to build/rebuild a QMgr.
I do of course also take regular configuration dumps, but these are more for running queries and reports like "how many QMgrs have this channel defined and where are they?" kind of thing.
Also, when taking backups there is almost NEVER a good reason to back up a QMgr at a point in time. However, if it is required be sure to stop the QMgr first. Also, think long and hard about capturing certificates in a backup. Many people are good about locking the certificate directory so only mqm can read it but often the backups are unprotected. As long as you aren't trying to restore on top of Production, many shops let you restore the Production /var/mqm/* files to your own sandbox. If the QMgr's KDB files are included, you just lost them. An alternative is to put the certificates in /etc or some other directory that is protected but not backed up with the QMgr's directories.
Related
I'm implementing a stream pipe with Spring Cloud Data Flow.
My problem is that I configured MANUALLY the pipe (e.g. http | log_sink) in the server and it will be lost if I reset that server (think in an Amazon EC2 instance that can be hard reseted).
Which is the suggested way to keep versioning of pipes using SCDF?
Thanks.
I am summarizing the discussion from the comments.
To automate the promotion of Stream/Task workloads from lower to higher-level environments, the recommended approach would be the use of SCDF's Java DSL. With this, users can programmatically register, create, deploy, or launch stream/task in a repeatable manner and across many different platforms simultaneously (if there's a need for it). The Boot App built with the Java DSL can be versioned in Git, and it can be CD/GitOps friendly. With sufficient generalization to this App, it can also be reused by many different teams by overriding the defaults.
We put this for use in the product proper for or IT and Acceptance tests, which run on every upstream commit daily across multiple Kubernetes and Cloud Foundry installations.
Alternatively, all of the register, create, deploy, or launch stream/task commands can also be dumped in a text or a property file. Once when you have the file, the dataflow:>script --file command can help slurp in all the commands in each of the new environments — see docs.
I'm comparing salt-cloud and terraform as tools to manage our infrastructure at GCE. We use salt stack to manage VM configurations, so I would naturally prefer to use salt-cloud as an integral part of the stack and phase out terraform as a legacy thing.
However my use case is critical on VM deployment time because we offer PaaS solution with VMs deployed on customer request, so need to deliver ready VMs on a click of a button within seconds.
And what puzzles me is why salt-cloud takes so long to deploy basic machines.
I have created neck-to-neck simple test with deploying three VMs based on default CentOS7 image using both terraform and salt-cloud (both in parallel mode). And the time difference is stunning - where terraform needs around 30 seconds to deploy requested machines (which is similar to time needed to deploy through GCE GUI), salt-cloud takes around 220 seconds to deploy exactly same machines under same account in the same zone. Especially strange is that first 130 seconds salt-cloud does not start deploying and does seemingly nothing at all, and only after around 130 seconds pass it shows message deploying VMs and those VMs appear in GUI as in deployment.
Is there something obvious that I'm missing about salt-cloud that makes it so slow? Can it be sped up somehow?
I would prefer to user full salt stack, but with current speed issues it has I cannot really afford that.
Note that this answer is a speculation based on what I understood about terraform and salt-cloud, I haven't verified with an experiment!
I think the reason is that Terraform keeps state of the previous run (either locally or remotely), while salt-cloud doesn't keep state and so queries the cloud before actually provisioning anything.
These two approaches (keeping state or querying before doing something) are needed, since both tools are idempotent (you can run them multiple times safely).
For example, I think that if you remove the state file of Terraform and re-run it, it will assume there is nothing in the cloud and will actually instantiate a duplicate. This is not to imply that terraform does it wrong, it is to show that state is important and Terraform docs say clearly that when operating in a team the state should be saved remotely, exactly to avoid this kind of problem.
Following my line of though, this should also mean that if you either run salt-cloud in verbose debug mode or look at the network traffic generated by it, in the first 130 secs you mention (before it says "deploying VMs"), you should see queries from salt-cloud to the cloud provider to dynamically construct the state.
Last point, the fact that salt-cloud doesn't store the state of a previous run doesn't mean that it is automatically safe to use in a team environment. It is safe to use as long as no two team members run it at the same time. On the other hand, terraform with remote state on Consul allows for example to lock, so that team concurrent usage will always be safe.
The One Binary principle explained here:
http://programmer.97things.oreilly.com/wiki/index.php/One_Binary states that one should...
"Build a single binary that you can identify and promote through all the stages in the release pipeline. Hold environment-specific details in the environment. This could mean, for example, keeping them in the component container, in a known file, or in the path."
I see many dev-ops engineers arguably violate this principle by creating one docker image per environment (ie, my-app-qa, my-app-prod and so on). I know that Docker favours immutable infrastructure which implies not changing an image after deployment, therefore not uploading or downloading configuration post deployment. Is there a trade-off between immutable infrastructure and the one binary principle or can they complement each-other? When it comes to separating configuration from code what is the best practice in a Docker world??? Which one of the following approaches should one take...
1) Creating a base binary image and then having a configuration Dockerfile that augments this image by adding environment specific configuration. (i.e my-app -> my-app-prod)
2) Deploying a binary-only docker image to the container and passing in the configuration through environment variables and so on at deploy time.
3) Uploading the configuration after deploying the Docker file to a container
4) Downloading configuration from a configuration management server from the running docker image inside the container.
5) Keeping the configuration in the host environment and making it available to the running Docker instance through a bind mount.
Is there another better approach not mentioned above?
How can one enforce the one binary principle using immutable infrastructure? Can it be done or is there a trade-off? What is the best practice??
I've about 2 years of experience deploying Docker containers now, so I'm going to talk about what I've done and/or know to work.
So, let me first begin by saying that containers should definitely be immutable (I even mark mine as read-only).
Main approaches:
use configuration files by setting a static entrypoint and overriding the configuration file location by overriding the container startup command - that's less flexible, since one would have to commit the change and redeploy in order to enable it; not fit for passwords, secure tokens, etc
use configuration files by overriding their location with an environment variable - again, depends on having the configuration files prepped in advance; ; not fit for passwords, secure tokens, etc
use environment variables - that might need a change in the deployment code, thus lessening the time to get the config change live, since it doesn't need to go through the application build phase (in most cases), deploying such a change might be pretty easy. Here's an example - if deploying a containerised application to Marathon, changing an environment variable could potentially just start a new container from the last used container image (potentially on the same host even), which means that this could be done in mere seconds; not fit for passwords, secure tokens, etc, and especially so in Docker
store the configuration in a k/v store like Consul, make the application aware of that and let it be even dynamically reconfigurable. Great approach for launching features simultaneously - possibly even accross multiple services; if implemented with a solution such as HashiCorp Vault provides secure storage for sensitive information, you could even have ephemeral secrets (an example would be the PostgreSQL secret backend for Vault - https://www.vaultproject.io/docs/secrets/postgresql/index.html)
have an application or script create the configuration files before starting the main application - store the configuration in a k/v store like Consul, use something like consul-template in order to populate the app config; a bit more secure - since you're not carrying everything over through the whole pipeline as code
have an application or script populate the environment variables before starting the main application - an example for that would be envconsul; not fit for sensitive information - someone with access to the Docker API (either through the TCP or UNIX socket) would be able to read those
I've even had a situation in which we were populating variables into AWS' instance user_data and injecting them into container on startup (with a script that modifies containers' json config on startup)
The main things that I'd take into consideration:
what are the variables that I'm exposing and when and where am I getting their values from (could be the CD software, or something else) - for example you could publish the AWS RDS endpoint and credentials to instance's user_data, potentially even EC2 tags with some IAM instance profile magic
how many variables do we have to manage and how often do we change some of them - if we have a handful, we could probably just go with environment variables, or use environment variables for the most commonly changed ones and variables stored in a file for those that we change less often
and how fast do we want to see them changed - if it's a file, it typically takes more time to deploy it to production; if we're using environment variable
s, we can usually deploy those changes much faster
how do we protect some of them - where do we inject them and how - for example Ansible Vault, HashiCorp Vault, keeping them in a separate repo, etc
how do we deploy - that could be a JSON config file sent to an deployment framework endpoint, Ansible, etc
what's the environment that we're having - is it realistic to have something like Consul as a config data store (Consul has 2 different kinds of agents - client and server)
I tend to prefer the most complex case of having them stored in a central place (k/v store, database) and have them changed dynamically, because I've encountered the following cases:
slow deployment pipelines - which makes it really slow to change a config file and have it deployed
having too many environment variables - this could really grow out of hand
having to turn on a feature flag across the whole fleet (consisting of tens of services) at once
an environment in which there is real strive to increase security by better handling sensitive config data
I've probably missed something, but I guess that should be enough of a trigger to think about what would be best for your environment
How I've done it in the past is to incorporate tokenization into the packaging process after a build is executed. These tokens can be managed in an orchestration layer that sits on top to manage your platform tools. So for a given token, there is a matching regex or xpath expression. That token is linked to one or many config files, depending on the relationship that is chosen. Then, when this build is deployed to a container, a platform service (i.e. config mgmt) will poke these tokens with the correct value with respect to its environment. These poke values most likely would be pulled from a vault.
I have a proprietary CMS that keeps a lot (20k lines) of configuration files on disk. I have quite a few nodes, all with the same configurations except for one or two elements that designate the node name and the IP.
Since this is proprietary I do not have a lot of leverage for going in and completely overhauling the configuration loading to look at an endpoint, though I might be able to be creative.
My questions are simple, but I do not know a better place to answer them:
Is this a use case for distributed configuration management like Zookeeper? Ideally I'd like to spin up a box and have it look for a service endpoint to load config files rather than have the config files deployed through source. This way I can update the configuration in one place, and have it replicate to all nodes without doing a full deployment.
Can Zookeeper (or equivalent) mimic a file system? Could I mount an NFS point and have it expose configuration as if they were files on the filesystem, even if these are symbolic constructs? Does this make sense?
Your configuration use case seems more like a a job for chef, puppet or similar system. They will allow you to update the configuration in one place, keep them version controlled, and distribute them properly to all target nodes.
Zookeeper makes sense when your application/service needs to dynamically get fresh configuration data during live operation, and when multiple nodes in your system need the same consistent view of that data. If you don't have this requirements, Zookeeper might be too much of an overhead for just laying down mostly static config files on disk.
As for mimicking a filesystem, there is zkfuse which you could use to mount it. But again, it doesn't look like this is what you want. Zookeeper should not be used as an actual file system replacement or file distribution system. It is best for storing small bits of metadata that needs to be consistent across your distributed system.
I have a few jobs in Jenkins that use Selenium to modify a database through a website's front end. If some of these jobs run at the same time, errors due to dirty reads can result. Is there a way to force certain jobs in Jenkins to be unable to run at the same time? I would prefer not to have to place or pick up a lock on the database, which could be read or modified by any number of users who are also testing.
You want the Throttle Concurrent Builds plugin which lets you define global and per-node semaphores.
Locks and latches is being deprecated in favor of Throttle Concurrent builds.
I've tried both the locks & latches plugin and the port allocator plugin as ways to achieve what you're trying to do. Neither worked reliably for me. Locks & latches worked some of the time, but I'd occasionally get hung jobs. Using port allocator as a hack will work unless you have multiple jenkins nodes, but the config overhead is kind of high. What I've ultimately settled upon is another hack, but it works reliably and uses core Jenkins stuff (no plugins):
create a slave node running on the same box as the master (or not, if you have lots of boxes)
give this slave a single executor (key)
tie the 2 (or n) jobs that must not run together to this new slave node
optionally set the slave's usage to 'tied jobs only' if it'll screw up your other jobs if they happen to run on the new slave
Since the slave has only one executor, the jobs tied to it can never run together.
If you regard the database as a shared resource that can only be used exclusively then this fits the usecase of the Lockable resources plugin.
It is being actively developed and improved and is very versatile.