I am trying to read an image, DCT transform it, quantize it, and then save the quantized coefficients to a file that will be read into a fractal encoding program.
When I decode the file (with the quantized coefficients), all I get is some grey screen. Is this due to the contents of the file or am I missing out on something else?
%% LOSSY COMPRESSION-DECOMPRESSION USNIG DISCRETE COSINE TRANSFORM TECHNIQUE.
function[]=dct11(filename,n,m)
% "filename" is the string of characters including Image name and its
% extension.
% "n" denotes the number of bits per pixel.
% "m" denotes the number of most significant bits (MSB) of DCT Coefficients.
% Matrix Intializations.
N=8; % Block size for which DCT is Computed.
M=8;
I=imread('Lenna.bmp'); % Reading the input image file and storing intensity values in 2-D matrix I.
I_dim=size(I); % Finding the dimensions of the image file.
I_Trsfrm.block=zeros(N,M); % Initialising the DCT Coefficients Structure Matrix "I_Trsfrm" with the required dimensions.
Norm_Mat=[16 11 10 16 24 40 51 61 % Normalization matrix (8 X 8) used to Normalize the DCT Matrix.
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99];
save('LenaInitial.dat','I');
%% PART-1: COMPRESSION TECHNIQUE.
% Computing the Quantized & Normalized Discrete Cosine Transform.
% Y(k,l)=(2/root(NM))*c(k)*c(l)*sigma(i=0:N-1)sigma(j=0:M-1)y(i,j)cos(pi(2i+1)k/(2N))cos(pi(2j+1)l/(2M))
% where c(u)=1/root(2) if u=0
% = 1 if u>0
for a=1:I_dim(1)/N
for b=1:I_dim(2)/M
for k=1:N
for l=1:M
prod=0;
for i=1:N
for j=1:M
prod=prod+double(I(N*(a-1)+i,M*(b-1)+j))*cos(pi*(k-1)*(2*i-1)/(2*N))*cos(pi*(l-1)*(2*j-1)/(2*M));
end
end
if k==1
prod=prod*sqrt(1/N);
else
prod=prod*sqrt(2/N);
end
if l==1
prod=prod*sqrt(1/M);
else
prod=prod*sqrt(2/M);
end
I_Trsfrm(a,b).block(k,l)=prod;
end
end
% Normalizing the DCT Matrix and Quantizing the resulting values.
I_Trsfrm(a,b).block=round(I_Trsfrm(a,b).block./Norm_Mat);
% save ('LenaCompressed1.txt');
end
end
%Andrew added this
% save ('LenaCompressed.txt');
% zig-zag coding of the each 8 X 8 Block.
for a=1:I_dim(1)/N
for b=1:I_dim(2)/M
I_zigzag(a,b).block=zeros(1,0);
freq_sum=2:(N+M);
counter=1;
for i=1:length(freq_sum)
if i<=((length(freq_sum)+1)/2)
if rem(i,2)~=0
x_indices=counter:freq_sum(i)-counter;
else
x_indices=freq_sum(i)-counter:-1:counter;
end
index_len=length(x_indices);
y_indices=x_indices(index_len:-1:1); % Creating reverse of the array as "y_indices".
for p=1:index_len
if I_Trsfrm(a,b).block(x_indices(p),y_indices(p))<0
bin_eq=dec2bin(bitxor(2^n-1,abs(I_Trsfrm(a,b).block(x_indices(p),y_indices(p)))),n);
else
bin_eq=dec2bin(I_Trsfrm(a,b).block(x_indices(p),y_indices(p)),n);
end
I_zigzag(a,b).block=[I_zigzag(a,b).block,bin_eq(1:m)];
end
else
counter=counter+1;
if rem(i,2)~=0
x_indices=counter:freq_sum(i)-counter;
else
x_indices=freq_sum(i)-counter:-1:counter;
end
index_len=length(x_indices);
y_indices=x_indices(index_len:-1:1); % Creating reverse of the array as "y_indices".
for p=1:index_len
if I_Trsfrm(a,b).block(x_indices(p),y_indices(p))<0
bin_eq=dec2bin(bitxor(2^n-1,abs(I_Trsfrm(a,b).block(x_indices(p),y_indices(p)))),n);
else
bin_eq=dec2bin(I_Trsfrm(a,b).block(x_indices(p),y_indices(p)),n);
end
I_zigzag(a,b).block=[I_zigzag(a,b).block,bin_eq(1:m)];
end
end
end
end
end
% Clearing unused variables from Memory space
clear I_Trsfrm prod;
clear x_indices y_indices counter;
% Run-Length Encoding the resulting code.
for a=1:I_dim(1)/N
for b=1:I_dim(2)/M
% Computing the Count values for the corresponding symbols and
% savin them in "I_run" structure.
count=0;
run=zeros(1,0);
sym=I_zigzag(a,b).block(1);
j=1;
block_len=length(I_zigzag(a,b).block);
for i=1:block_len
if I_zigzag(a,b).block(i)==sym
count=count+1;
else
run.count(j)=count;
run.sym(j)=sym;
j=j+1;
sym=I_zigzag(a,b).block(i);
count=1;
end
if i==block_len
run.count(j)=count;
run.sym(j)=sym;
end
end
% Computing the codelength needed for the count values.
dim=length(run.count); % calculates number of symbols being encoded.
maxvalue=max(run.count); % finds the maximum count value in the count array of run structure.
codelength=log2(maxvalue)+1;
codelength=floor(codelength);
% Encoding the count values along with their symbols.
I_runcode(a,b).code=zeros(1,0);
for i=1:dim
I_runcode(a,b).code=[I_runcode(a,b).code,dec2bin(run.count(i),codelength),run.sym(i)];
end
end
end
% Saving the Compressed Code to Disk.
save ('LenaCompressed.txt','I_runcode');
% Clearing unused variables from Memory Space.
clear I_zigzag run;
Andrew, you use MATLAB's save statement to save the coefficients into a file ending with .txt. What does the "fractal encoding program" assume about the file format?
Your file will not be a text file. Check out the documentation of save. Perhaps you can use the '-ascii' flag.
Otherwise, you may have to write that file of coefficients yourself. To get you started, I'd say fprintf is worth a look.
Related
I know how to calculate the line parameter defined as x below for one layer, considering the given wavelength range 50 to 550 um. Now I want to repeat this calculation for all 10 layers. all the other parameters remain as a constant while temperature varies from layer 1 to 10.Any suggestion would be greatly appreciated.
wl=[100 200 300 400 500]; %5 wavelengths, 5 spectral lines
br=[0.12 0.56 0.45 0.67 0.89]; % broadening parameter for each wavelength
T=[101 102 103 104 105 106 107 108 109 110];% temperature for 10 layers
wlall=linspace(50,550,40);%all the wavelength in 50um to 550 um range
% x is defined as,
%(br*wl/(br*br + (wlall-wl)^2))*br;
%If I do a calculation for the first line
((br(1)*T(1)*wl(1))./(br(1)*br(1)*(T(1)) + (wlall(:)-wl(1)).^2))*br(1)*T(1)
%Now I'm going to calculate it for all the lines in the first layer
k= repmat(wlall,5,1);
for i=1:5;
kn(i,:)=(br(i)*T(1)* wl(i)./(br(i)*br(i)*T(1) + (k(i,:)-
wl(i)).^2))*br(i)*T(1);
end
%Above code gives me x parameter for all the wavelengths in the
%given range( 50 to 550 um) in the first layer, dimension is (5,40)
% I need only the maximum value of each column
an=(kn(:,:)');
[ll,mm]=sort(an,2,'descend');
vn=(ll(:,1))'
%Now my output has the dimension , (1,40) one is for the first layer, 40 is
%for the maximum x parameter corresponding to each wavelength in first layer
%Now I want to calculate the x parameter in all 10 layers,So T should vary
%from T(1) to T(10) and get the
%maximum in each column, so my output should have the dimension ( 10, 40)
You just need to run an extra 'for' loop for each value of 'T'. Here is an example:
clc; close all; clear all;
wl=[100 200 300 400 500]; %5 wavelengths, 5 spectral lines
br=[0.12 0.56 0.45 0.67 0.89]; % broadening parameter for each wavelength
T=[101 102 103 104 105 106 107 108 109 110];% temperature for 10 layers
wlall=linspace(50,550,40);%all the wavelength in 50um to 550 um range
% x is defined as,
%(br*wl/(br*br + (wlall-wl)^2))*br;
%If I do a calculation for the first line
((br(1)*T(1)*wl(1))./(br(1)*br(1)*(T(1)) + (wlall(:)-wl(1)).^2))*br(1)*T(1)
%Now I'm going to calculate it for all the lines in the first layer
k= repmat(wlall,5,1);
for index = 1:numel(T)
for i=1:5
kn(i,:, index)=(br(i)*T(index)* wl(i)./(br(i)*br(i)*T(index) + (k(i,:)- wl(i)).^2))*br(i)*T(index);
end
an(:, :, index) = transpose(kn(:, :, index));
vn(:, index) = max(an(:, :, index), [], 2);
end
vn = transpose(vn);
I received the code to the initialization the vector A1.
Sc=[75 80 85];
Sp=[60 65 70];
C=[10 20 30 40 50 60;
11 21 31 41 51 61];
% KK=1000000;
% for k=1:KK
k=1;
A1=[];
A1=[-C(k,1)+max(60-Sc(1),0) -C(k,2)+max(60-Sc(2),0) -C(k,3)+max(60-Sc(3),0)
-C(k,4)+max(Sp(1)-60,0) -C(k,5)+max(Sp(2)-60,0) -C(k,6)+max(Sp(3)-60,0)];
%end; %KK
The code above is work, but it isn't optimal (it's very long and I need rewrite it when vector's length, n, is changed). In my task the length of A1 is even, and lies in range 6<=n<=16 typically. But I need to initialize vector A1 the huge number times, k<=10^6.
I'd like to rewrite code. My code is below.
n= size(C,2);
M=60;
%KK=1000000;
% for k=1:KK
k=1;
AU=[];AD=[];
for i=1:n
if i<=n/2
AU=[AU, -C(k,i)+max(M-Sc(i),0)];
else
AD=[AD, -C(k,i)+max(Sp(i-n/2)-M,0)];
end %if
end % i
A1=[AU; AD]
% end; % KK
Question. Is it possible to rewrite the code without for-loop? Does it make sense when the vector's length, n, is substantially less the number of initialization, k?
This is a vectorized form:
Sc=[75 80 85];
Sp=[60 65 70];
C=[10 20 30 40 50 60;
11 21 31 41 51 61];
kk=2;%1000000;
n= 6;
M=60;
[K , I] = meshgrid(1:kk,1:n);
Idx = sub2ind([kk,n], K, I);
condition = I <= n/2;
AU = -C(Idx(condition)) + max(M-Sc(I(condition)),0).';
AD = -C(Idx(~condition)) + max(Sp(I(~condition) - n/2)-M,0).';
A1 = [AU AD].'
note: I changed kk from 1000000 to 2 because number of rows of C is 2 and can not be indexed with numbers greater than 2. So this make sence if number of rows of C would be 1000000
I have implemented "normalized cut" segmentation. The change here is that, instead of giving an image as input, I have given an matrix of image. As my output looks odd to me. I need to know whether my implementation is correct or not.
Code:
clear all
tic;
% im = imread('lena.pgm');
im =[94 122 99 101 111 101;
99 92 103 87 107 116;
93 109 113 84 86 106;
5 17 6 54 56 53;
13 11 5 56 44 50;
0 10 5 49 42 51];
% resizing to avoid out of memory error
% cim=imresize(im,[100 100]);
cim=im;
[r, c]=size(cim);
ind=find(cim);
lind=length(ind);
[I,J]=ind2sub([r,c],ind);
% % I've used linear indexing to speed up the partitioning
% vectoring the pixel nodes
for i=1:lind
V1(i)=double(cim(ind(i)));
end
% normalizing to [0-1] scale
V=(V1./255);
% w is the weight matrix (similarity matrix or adjacency matrix)
w=zeros(lind,lind);
% r, sigmaI, sigmaX values
rad=4.5;
sigi=10;
sigx=25;
% computing the weight matrix
for i=1:lind
x1=I(i,1);
y1=J(i,1);
for j=1:lind
if (i==j)
w(i,j)=1;
else
x2=I(j,1);
y2=J(j,1);
dist=((x1-x2)^2 + (y1-y2)^2);
if sqrt(dist)>=rad
dx=0;
else
dx=exp(-((dist)/(sigx^2)));
end
pdiff=(V(i)-V(j))^2;
di=exp(-((pdiff)/(sigi)^2));
w(i,j)=di*dx;
end
end
end
d=zeros(lind,lind);
s=sum(w,2);
% the diagonal matrix for computing the laplacian matrix
for i=1:lind
d(i,i)=s(i);
end
A=zeros(lind,lind);
A=(d-w); % A is the laplacian matrix
% vt has the eigen vectors corresponding to eigen values in vl
% other eigs / eig functions in matlab can be used but I'm using the
% function to compute the 5 smallest eigenvectors
[vt,vl]=eigs(A,d,5,'sm');
% se has the second smallest eigen vector, third and so on
se=vt(:,2:4);
% % % % % Simultaneous 'k' partitions
k=6;
id=kmeans(se,k);
imp=cell(1,k);
pic=cell(1,k);
for i=1:k
imp{1,i}= find(id(:,1)==i);
mat=zeros(100,100);
in=imp{1,i};
mat(in)=cim(in);
pic{1,i}=uint8(mat);
% figure,imshow(pic{1,i});
end
% pic has the sub graphs or partitiond sub images
figure;
subplot(2,4,1);imshow(uint8(im));title('Original image');
subplot(2,4,2);imshow(uint8(cim));title('Preprocessed image');
subplot(2,4,3);imshow(pic{1,1});title('Partition 1');
subplot(2,4,4);imshow(pic{1,2});title('Partition 2');
subplot(2,4,5);imshow(pic{1,3});title('Partition 3');
subplot(2,4,6);imshow(pic{1,4});title('Partition 4');
subplot(2,4,7);imshow(pic{1,5});title('Partition 5');
subplot(2,4,8);imshow(pic{1,6});title('Partition 6');
toc;
Output:
Thanks in advance.
I'm working with k-means in MATLAB. Here is my code:
load cobat.txt; % read the file
k=input('Enter a number: '); % determine the number of cluster
isRand=0; % 0 -> sequeantial initialization
% 1 -> random initialization
[maxRow, maxCol]=size(cobat);
if maxRow<=k,
y=[m, 1:maxRow];
else
% initial value of centroid
if isRand,
p = randperm(size(cobat,1)); % random initialization
for i=1:k
c(i,:)=cobat(p(i),:) ;
end
else
for i=1:k
c(i,:)=cobat(i,:); % sequential initialization
end
end
temp=zeros(maxRow,1); % initialize as zero vector
u=0;
while 1,
d=DistMatrix3(cobat,c); % calculate the distance
[z,g]=min(d,[],2); % set the matrix g group
if g==temp, % if the iteration doesn't change anymore
break; % stop the iteration
else
temp=g; % copy the matrix to the temporary variable
end
for i=1:k
f=find(g==i);
if f % calculate the new centroid
c(i,:)=mean(cobat(find(g==i),:),1)
end
end
c
sort(c)
end
y=[cobat,g]
"cobat" is the file of mine. Here it looks:
65 80 55
45 75 78
36 67 66
65 78 88
79 80 72
77 85 65
76 77 79
65 67 88
85 76 88
56 76 65
"c" is the variable of centroid (the central of the cluster) per each cluster. "g" is the variable to show the cluster number. The problem is, I want to sort/fit the cluster number (small to big) based on the centroid (c). So, I try to sort(c), but it doesn't affect to the cluster number (g).
When I try to sort(g), it's sorted just not like what I want. I want the cluster number is sorted based on the centroid. Example; when I run the code with k=3, here is the final centroid
73.0000 79.0000 70.6667 %C 1
58.3333 73.3333 84.6667 %C 2
36.0000 67.0000 66.0000 %C 3
When I sort it, the number cluster is also "sorted",
36.0000 67.0000 66.0000 %C 3
58.3333 73.3333 70.6667 %C 2
73.0000 79.0000 84.6667 %C 1
I want it the number cluster is fit, like this.
36.0000 67.0000 66.0000 %C 1
58.3333 73.3333 70.6667 %C 2
73.0000 79.0000 84.6667 %C 3
It's fit, not sorted, so when this line 'y=[cobat,g]' is run, it changes too.
This seems easy, but tricky. I couldn't figure out. Anyone have any idea to solve it?
Thank you.
Use the sorted indices returned from sort or sortrow
[B,index] = sortrows( c ); % sort the centroids
g = g(index(end:-1:1)); % arrange the labels based on centroids' order
I have a 200x200 gridded data points. I want to randomly pick 15 grid points from that grid and replace the values in those grids with values selected from a known distribution shown below. All 15 grid points are assigned random values from the given distribution.
The given distribution is:
Given Distribution
314.52
1232.8
559.93
1541.4
264.2
1170.5
500.97
551.83
842.16
357.3
751.34
583.64
782.54
537.28
210.58
805.27
402.29
872.77
507.83
1595.1
The given distribution is made up from 20 values, which are part of those gridded data points. These 20 grid points are fixed i.e. they must not be part of randomly picking 15 points. The coordinates of these 20 points, which are fixed and should not be part of random picking, are:
x 27 180 154 183 124 146 16 184 138 122 192 39 194 129 115 33 47 65 1 93
y 182 81 52 24 168 11 90 153 133 79 183 25 63 107 161 14 65 2 124 79
Can someone help with how to implement this problem in Matlab?
Building off of my answer to your simpler question, here is a solution for how you can choose 15 random integer points (i.e. subscripted indices into your 200-by-200 matrix) and assign random values drawn from your set of values given above:
mat = [...]; %# Your 200-by-200 matrix
x = [...]; %# Your 20 x coordinates given above
y = [...]; %# Your 20 y coordinates given above
data = [...]; %# Your 20 data values given above
fixedPoints = [x(:) y(:)]; %# Your 20 points in one 20-by-2 matrix
randomPoints = randi(200,[15 2]); %# A 15-by-2 matrix of random integers
isRepeated = ismember(randomPoints,fixedPoints,'rows'); %# Find repeated sets of
%# coordinates
while any(isRepeated)
randomPoints(isRepeated,:) = randi(200,[sum(isRepeated) 2]); %# Create new
%# coordinates
isRepeated(isRepeated) = ismember(randomPoints(isRepeated,:),...
fixedPoints,'rows'); %# Check the new
%# coordinates
end
newValueIndex = randi(20,[1 15]); %# Select 15 random indices into data
linearIndex = sub2ind([200 200],randomPoints(:,1),...
randomPoints(:,2)); %# Get a linear index into mat
mat(linearIndex) = data(newValueIndex); %# Update the 15 points
In the above code I'm assuming that the x coordinates correspond to row indices and the y coordinates correspond to column indices into mat. If it's actually the other way around, swap the second and third inputs to the function SUB2IND.
I think yoda already gave the basic idea. Call randi twice to get the grid coordinate to replace, and then replace it with the appropriate value. Do that 15 times.