Taken from "Scala with cats" (page 18):
Implicit Conversions
When you create a type class instance constructor using an implicit def, be sure to mark the parameters to the method as implicit parameters. Without this keyword, the compiler won’t be able to fill in the parameters during implicit resolution. implicit methods with non‐implicit parameters form a different Scala pattern called an implicit conversion. This is also different from the previous section on Interface Syntax, because in that case the JsonWriter is an implicit class with extension methods. Implicit conversion is an older programming pattern that is frowned upon in modern Scala code. Fortunately, the compiler will warn you when you do this. You have to manually enable implicit conversions by importing scala.language.implicitConversions in your file
Can anyone please sum up well why implicit conversion are deprecated? What were there limit or issues? Why the approach with implicit parameters is better?
Note I know how to use the modern approach well, including chaining implicit and all. I am just curious as to what was the issue and why it was deprecated.
Martin Odersky, the inventor of Scala, has indicated that implicits (and implicit conversions) are being deprecated in scala 3.1 and will eventually be removed from the language altogether.
the implicit functionality will be replaced with Extension Methods and Givens. Extension Methods and Givens provide a more tighter functional solution that doesn't introduce the unsuspecting and hidden side effects that implicits cause. Odersky now views implicits as a “recipe for disaster" and are "too implicit" which was his motivation to replace their functionality in 3.x.
https://www.slideshare.net/Lightbend/scala-3-is-coming-martin-odersky-shares-what-to-know
https://hub.packtpub.com/is-scala-3-0-a-new-language-all-together-martin-odersky-its-designer-says-yes-and-no/
Implicit function types are planned to land in Scala 3.0, and claimed to support "effect capabilities" and composable. It is presented as a better alternative to monad transformers. However, reading further explanation it just seems that implicit function types can only model Reader monad. Am I missing something?
Immediately, it is most trivial to notice that implicit function types allow us to encode the Reader monad primarily allocation free, but losing the convenient for comprehension syntax.
I think what Odersky is referring to when he talks about "a better alternative to monad transformers" is the fact that implicit function types allow you to encode a rather boilerplate free free monad (no pun intended), which is one approach to composing monadic effects.
From the following comment on discourse (emphasis mine):
I guess we both agree that in the future we will have very fine-grained effect systems, so much so that a lot of code with be effectful in some way or another. But then you end up with large parts of your program written in monad structure. The structure itself does not tell you which effects the code has; you need to turn to the types for that.
On the other hand, every time you introduce a new effect category (and it could be as ubiquitous as “not proven to be total”) you need to completely refactor your code into the monadic scheme. And that means you are willing to take a slowdown of (I estimate) 10, risk stackoverflows, be extremely verbose, and have a really hard time composing all your fine grained effects. Or you go free which means better composition but likely even more boilerplate. I can see this work in the sense that you very forcefully tell your users: “don’t use effects, it’s just too painful”. So it could have education value. But if you have to deal with effects, it’s utterly suboptimal in several dimensions.
In his paper, Foundations of Implicit Function Types, Odersky lays out an alternative encoding for free monads using implicit function types which require less boilerplate:
// Free definition
type FreeIFT[A[_], M[_], T] = implicit Natural[A, M] => implicit Monad[M] => M[T]
// GADT defintion
enum KVStoreB[T] {
case Put(key: String, value: Int) extends KVStoreB[Unit]
case Get(key: String) extends KVStoreB[Option[Int]]
}
// Lifted definition
import KVStoreB._
type KVStoreIFT[M[_], T] = FreeIFT[KVStoreB, M, T]
def iftExpr[M[_]]: KVStoreIFT[M, Option[Int]] =
for {
_ <- Put("foo", 2).lift
_ <- Put("bar", 5).lift
n <- Get("foo").lift
} yield n
// Free interpeter
def iftInterpreter = new Natural[KVStoreB, Future] {
def apply[T](fa: KVStoreB[T]): Future[T] = ???
}
// Running the interpreter over the free structure
val iftOutput: Future[Option[Int]] = iftExpr[Future](iftInterpreter)
I'm using the Reader monad in Scala as provided by the scalaz library. I'm familiar with this monad as defined in Haskell. The problem is that I cannot find the functions equivalent to return, local, and sequence (among others).
Currently I use constructs that I do not like since I'm repeating myself or making my code a bit obscure.
Regarding return, I'm currently using:
Reader{_ => someValue}
I'd rather just use a construct like unit(someValue), but I could not find anything on the internet. There are tutorials like this one that use the approach above, and which I consider not optimal.
Regarding local I also have to do something similar: instead of typing something like: local f myReader I have to unfold its definition:
Reader{env => myReader.run(f(env))
Finally, sequence is a bit closer to what I would expect (being a Haskell refugee doing Scala):
readers: List[Reader[Env, T]]
readerTs: Reader[Env, List[T]] = readers.sequenceU
My problem with this implementation is that, being relatively new to Scala, the type of sequenceU
final class TraverseOps[F[_],A] private[syntax](val self: F[A])(implicit val F: Traverse[F]) extends Ops[F[A]] {
//...
def sequenceU(implicit G: Unapply[Applicative, A]): G.M[F[G.A]]
appears like rather obscure, and seems like black magic. Ideally I would like to use a sequence operations on Monads.
Is there a better translation of these constructs to Scala available on scalaz or similar library? I'm not married to any Functional library for Scala, so any solution using other libraries will do, although I'd rather have an answer using scalaz, since I already implemented my code using it.
To make the things simpler, I fill in some types. Changing them to defs with generic types should still work.
Also I extracted the ReaderInt type, to avoid confusion with type lambdas.
return / pure / point
Scala does not have automatic typeclass resolution, so you need to provide them implicitly. For Kleisli (being a monad transformer for reader),
Kleisli[Id, ?, ?] is enough
implicit val KA = scalaz.Kleisli.kleisliIdApplicative[Int]
type ReaderInt[A] = Kleisli[Id.Id, Int, A]
val alwaysHello = KA.point("hello")
or with imported syntax:
import scalaz.syntax.applicative._
val alwaysHello = "hello".point[ReaderInt]
So as a general rule, you
1) import the applicative intance, which usually located in scalaz.std.something.somethingInstance
2) import scalaz.syntax.something._
3) then you can write x.point[F], where F is your applicative.
local
Not sure, that it answers your question, but Kleisli has a local method.
val f: String ⇒ Int = _.length
val alwaysEleven = alwaysHello local f
sequencing
The same way, you are free to choose to use syntax for or to specify type classes explicitly.
import scalaz.std.list.listInstance
val initial: List[ReaderInt[String]] = ???
val sequenced: ReaderInt[List[String]] = Traverse[List].sequence[ReaderInt, String](initial)
import scalaz.syntax.traverse._
val z = x.sequence[ReaderInt, String]
I prefer not to use sequenceU, which uses Unapply typelcass to infer the G type, because sometimes scala has troubles of figuring out the right one.
And I personally do not find it messy to put in some types myself.
It may worth to look into cats, though it does not have much yet.
Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 4 years ago.
Improve this question
So far implicit parameters in Scala do not look good for me -- it is too close to global variables, however since Scala seems like rather strict language I start doubting in my own opinion :-).
Question: could you show a real-life (or close) good example when implicit parameters really work. IOW: something more serious than showPrompt, that would justify such language design.
Or contrary -- could you show reliable language design (can be imaginary) that would make implicit not neccessary. I think that even no mechanism is better than implicits because code is clearer and there is no guessing.
Please note, I am asking about parameters, not implicit functions (conversions)!
Updates
Global variables
Thank you for all great answers. Maybe I clarify my "global variables" objection. Consider such function:
max(x : Int,y : Int) : Int
you call it
max(5,6);
you could (!) do it like this:
max(x:5,y:6);
but in my eyes implicits works like this:
x = 5;
y = 6;
max()
it is not very different from such construct (PHP-like)
max() : Int
{
global x : Int;
global y : Int;
...
}
Derek's answer
This is great example, however if you can think of as flexible usage of sending message not using implicit please post an counter-example. I am really curious about purity in language design ;-).
In a sense, yes, implicits represent global state. However, they are not mutable, which is the true problem with global variables -- you don't see people complaining about global constants, do you? In fact, coding standards usually dictate that you transform any constants in your code into constants or enums, which are usually global.
Note also that implicits are not in a flat namespace, which is also a common problem with globals. They are explicitly tied to types and, therefore, to the package hierarchy of those types.
So, take your globals, make them immutable and initialized at the declaration site, and put them on namespaces. Do they still look like globals? Do they still look problematic?
But let's not stop there. Implicits are tied to types, and they are just as much "global" as types are. Does the fact that types are global bother you?
As for use cases, they are many, but we can do a brief review based on their history. Originally, afaik, Scala did not have implicits. What Scala had were view types, a feature many other languages had. We can still see that today whenever you write something like T <% Ordered[T], which means the type T can be viewed as a type Ordered[T]. View types are a way of making automatic casts available on type parameters (generics).
Scala then generalized that feature with implicits. Automatic casts no longer exist, and, instead, you have implicit conversions -- which are just Function1 values and, therefore, can be passed as parameters. From then on, T <% Ordered[T] meant a value for an implicit conversion would be passed as parameter. Since the cast is automatic, the caller of the function is not required to explicitly pass the parameter -- so those parameters became implicit parameters.
Note that there are two concepts -- implicit conversions and implicit parameters -- that are very close, but do not completely overlap.
Anyway, view types became syntactic sugar for implicit conversions being passed implicitly. They would be rewritten like this:
def max[T <% Ordered[T]](a: T, b: T): T = if (a < b) b else a
def max[T](a: T, b: T)(implicit $ev1: Function1[T, Ordered[T]]): T = if ($ev1(a) < b) b else a
The implicit parameters are simply a generalization of that pattern, making it possible to pass any kind of implicit parameters, instead of just Function1. Actual use for them then followed, and syntactic sugar for those uses came latter.
One of them is Context Bounds, used to implement the type class pattern (pattern because it is not a built-in feature, just a way of using the language that provides similar functionality to Haskell's type class). A context bound is used to provide an adapter that implements functionality that is inherent in a class, but not declared by it. It offers the benefits of inheritance and interfaces without their drawbacks. For example:
def max[T](a: T, b: T)(implicit $ev1: Ordering[T]): T = if ($ev1.lt(a, b)) b else a
// latter followed by the syntactic sugar
def max[T: Ordering](a: T, b: T): T = if (implicitly[Ordering[T]].lt(a, b)) b else a
You have probably used that already -- there's one common use case that people usually don't notice. It is this:
new Array[Int](size)
That uses a context bound of a class manifests, to enable such array initialization. We can see that with this example:
def f[T](size: Int) = new Array[T](size) // won't compile!
You can write it like this:
def f[T: ClassManifest](size: Int) = new Array[T](size)
On the standard library, the context bounds most used are:
Manifest // Provides reflection on a type
ClassManifest // Provides reflection on a type after erasure
Ordering // Total ordering of elements
Numeric // Basic arithmetic of elements
CanBuildFrom // Collection creation
The latter three are mostly used with collections, with methods such as max, sum and map. One library that makes extensive use of context bounds is Scalaz.
Another common usage is to decrease boiler-plate on operations that must share a common parameter. For example, transactions:
def withTransaction(f: Transaction => Unit) = {
val txn = new Transaction
try { f(txn); txn.commit() }
catch { case ex => txn.rollback(); throw ex }
}
withTransaction { txn =>
op1(data)(txn)
op2(data)(txn)
op3(data)(txn)
}
Which is then simplified like this:
withTransaction { implicit txn =>
op1(data)
op2(data)
op3(data)
}
This pattern is used with transactional memory, and I think (but I'm not sure) that the Scala I/O library uses it as well.
The third common usage I can think of is making proofs about the types that are being passed, which makes it possible to detect at compile time things that would, otherwise, result in run time exceptions. For example, see this definition on Option:
def flatten[B](implicit ev: A <:< Option[B]): Option[B]
That makes this possible:
scala> Option(Option(2)).flatten // compiles
res0: Option[Int] = Some(2)
scala> Option(2).flatten // does not compile!
<console>:8: error: Cannot prove that Int <:< Option[B].
Option(2).flatten // does not compile!
^
One library that makes extensive use of that feature is Shapeless.
I don't think the example of the Akka library fits in any of these four categories, but that's the whole point of generic features: people can use it in all sorts of way, instead of ways prescribed by the language designer.
If you like being prescribed to (like, say, Python does), then Scala is just not for you.
Sure. Akka's got a great example of it with respect to its Actors. When you're inside an Actor's receive method, you might want to send a message to another Actor. When you do this, Akka will bundle (by default) the current Actor as the sender of the message, like this:
trait ScalaActorRef { this: ActorRef =>
...
def !(message: Any)(implicit sender: ActorRef = null): Unit
...
}
The sender is implicit. In the Actor there is a definition that looks like:
trait Actor {
...
implicit val self = context.self
...
}
This creates the implicit value within the scope of your own code, and it allows you to do easy things like this:
someOtherActor ! SomeMessage
Now, you can do this as well, if you like:
someOtherActor.!(SomeMessage)(self)
or
someOtherActor.!(SomeMessage)(null)
or
someOtherActor.!(SomeMessage)(anotherActorAltogether)
But normally you don't. You just keep the natural usage that's made possible by the implicit value definition in the Actor trait. There are about a million other examples. The collection classes are a huge one. Try wandering around any non-trivial Scala library and you'll find a truckload.
One example would be the comparison operations on Traversable[A]. E.g. max or sort:
def max[B >: A](implicit cmp: Ordering[B]) : A
These can only be sensibly defined when there is an operation < on A. So, without implicits we’d have to supply the context Ordering[B] every time we’d like to use this function. (Or give up type static checking inside max and risk a runtime cast error.)
If however, an implicit comparison type class is in scope, e.g. some Ordering[Int], we can just use it right away or simply change the comparison method by supplying some other value for the implicit parameter.
Of course, implicits may be shadowed and thus there may be situations in which the actual implicit which is in scope is not clear enough. For simple uses of max or sort it might indeed be sufficient to have a fixed ordering trait on Int and use some syntax to check whether this trait is available. But this would mean that there could be no add-on traits and every piece of code would have to use the traits which were originally defined.
Addition:
Response to the global variable comparison.
I think you’re correct that in a code snipped like
implicit val num = 2
implicit val item = "Orange"
def shopping(implicit num: Int, item: String) = {
"I’m buying "+num+" "+item+(if(num==1) "." else "s.")
}
scala> shopping
res: java.lang.String = I’m buying 2 Oranges.
it may smell of rotten and evil global variables. The crucial point, however, is that there may be only one implicit variable per type in scope. Your example with two Ints is not going to work.
Also, this means that practically, implicit variables are employed only when there is a not necessarily unique yet distinct primary instance for a type. The self reference of an actor is a good example for such a thing. The type class example is another example. There may be dozens of algebraic comparisons for any type but there is one which is special.
(On another level, the actual line number in the code itself might also make for a good implicit variable as long as it uses a very distinctive type.)
You normally don’t use implicits for everyday types. And with specialised types (like Ordering[Int]) there is not too much risk in shadowing them.
Based on my experience there is no real good example for use of implicits parameters or implicits conversion.
The small benefit of using implicits (not needing to explicitly write a parameter or a type) is redundant in compare to the problems they create.
I am a developer for 15 years, and have been working with scala for the last 1.5 years.
I have seen many times bugs that were caused by the developer not aware of the fact that implicits are used, and that a specific function actually return a different type that the one specified. Due to implicit conversion.
I also heard statements saying that if you don't like implicits, don't use them.
This is not practical in the real world since many times external libraries are used, and a lot of them are using implicits, so your code using implicits, and you might not be aware of that.
You can write a code that has either:
import org.some.common.library.{TypeA, TypeB}
or:
import org.some.common.library._
Both codes will compile and run.
But they will not always produce the same results since the second version imports implicits conversion that will make the code behave differently.
The 'bug' that is caused by this can occur a very long time after the code was written, in case some values that are affected by this conversion were not used originally.
Once you encounter the bug, its not an easy task finding the cause.
You have to do some deep investigation.
Even though you feel like an expert in scala once you have found the bug, and fixed it by changing an import statement, you actually wasted a lot of precious time.
Additional reasons why I generally against implicits are:
They make the code hard to understand (there is less code, but you don't know what he is doing)
Compilation time. scala code compiles much slower when implicits are used.
In practice, it changes the language from statically typed, to dynamically typed. Its true that once following very strict coding guidelines you can avoid such situations, but in real world, its not always the case. Even using the IDE 'remove unused imports', can cause your code to still compile and run, but not the same as before you removed 'unused' imports.
There is no option to compile scala without implicits (if there is please correct me), and if there was an option, none of the common community scala libraries would have compile.
For all the above reasons, I think that implicits are one of the worst practices that scala language is using.
Scala has many great features, and many not so great.
When choosing a language for a new project, implicits are one of the reasons against scala, not in favour of it. In my opinion.
Another good general usage of implicit parameters is to make the return type of a method depend on the type of some of the parameters passed to it. A good example, mentioned by Jens, is the collections framework, and methods like map, whose full signature usually is:
def map[B, That](f: (A) ⇒ B)(implicit bf: CanBuildFrom[GenSeq[A], B, That]): That
Note that the return type That is determined by the best fitting CanBuildFrom that the compiler can find.
For another example of this, see that answer. There, the return type of the method Arithmetic.apply is determined according to a certain implicit parameter type (BiConverter).
It's easy, just remember:
to declare the variable to be passed in as implicit too
to declare all the implicit params after the non-implicit params in a separate ()
e.g.
def myFunction(): Int = {
implicit val y: Int = 33
implicit val z: Double = 3.3
functionWithImplicit("foo") // calls functionWithImplicit("foo")(y, z)
}
def functionWithImplicit(foo: String)(implicit x: Int, d: Double) = // blar blar
Implicit parameters are heavily used in the collection API. Many functions get an implicit CanBuildFrom, which ensures that you get the 'best' result collection implementation.
Without implicits you would either pass such a thing all the time, which would make normal usage cumbersome. Or use less specialized collections which would be annoying because it would mean you loose performance/power.
I am commenting on this post a bit late, but I have started learning scala lately.
Daniel and others have given nice background about implicit keyword.
I would provide me two cents on implicit variable from practical usage perspective.
Scala is best suited if used for writing Apache Spark codes. In Spark, we do have spark context and most likely the configuration class that may fetch the configuration keys/values from a configuration file.
Now, If I have an abstract class and if I declare an object of configuration and spark context as follows :-
abstract class myImplicitClass {
implicit val config = new myConfigClass()
val conf = new SparkConf().setMaster().setAppName()
implicit val sc = new SparkContext(conf)
def overrideThisMethod(implicit sc: SparkContext, config: Config) : Unit
}
class MyClass extends myImplicitClass {
override def overrideThisMethod(implicit sc: SparkContext, config: Config){
/*I can provide here n number of methods where I can pass the sc and config
objects, what are implicit*/
def firstFn(firstParam: Int) (implicit sc: SparkContext, config: Config){
/*I can use "sc" and "config" as I wish: making rdd or getting data from cassandra, for e.g.*/
val myRdd = sc.parallelize(List("abc","123"))
}
def secondFn(firstParam: Int) (implicit sc: SparkContext, config: Config){
/*following are the ways we can use "sc" and "config" */
val keyspace = config.getString("keyspace")
val tableName = config.getString("table")
val hostName = config.getString("host")
val userName = config.getString("username")
val pswd = config.getString("password")
implicit val cassandraConnectorObj = CassandraConnector(....)
val cassandraRdd = sc.cassandraTable(keyspace, tableName)
}
}
}
As we can see the code above, I have two implicit objects in my abstract class, and I have passed those two implicit variables as function/method/definition implicit parameters.
I think this is the best use case that we can depict in terms of usage of implicit variables.