Is it possible to visualize hbase table using Javascript - mongodb

I am new to HBase. Here is my problem.
I have a very large HBase table. An example data in the table.
1003:15:Species1:MONTH:01 0.1,02 0.7,03 0.3,04 0.1,05 0.1,06 0,07 0,08 0,09 0.1,10 0.2,11 0.3,12 0.1:LATITUDE 26.664503840000002 29.145674380000003,LONGITUDE -96.27139215 -90.40762858
As you can see for each Species there is a month attribute (12 vectors), Lat & Long, etc. There are around 300 unique species and several 1000 observations for one particular species.
I have written a Mapreduce job which does K-means clustering on one particular species. The output of my MR is
C1:1003:15:Species1:MONTH:01 0.1,02 0.7,03 0.3,04 0.1,05 0.1,06 0,07 0,08 0,09 0.1,10 0.2,11 0.3,12 0.1:LATITUDE 26.664503840000002 29.145674380000003,LONGITUDE -96.27139215 -90.40762858
The C1 indicates which cluster it belongs to.
Now I want to visualize the output i.e plot all the Lat and Long for each cluster on a Map. I was thinking of using Mapbox.js and D3.js for my data visualization, since the Lat and Longs in the data are bounding boxes for a particular region.
If I write the o/p of my MR back to Hbase is it possible to retrive the data using javascript on the client side ?
I was thinking of either writing the data to MongoDB which I can query using JS or write a program to create a JSON from the Hbase table which I can visualize. Any suggestions ?

You can use HBAse REST API though security-wise it is probably safer to put your own service in the middle

you can also use node-hbase from https://github.com/alibaba/node-hbase-client to read the hbase data

you can also use hbase-rpc-client https://github.com/falsecz/hbase-rpc-client to read data from nodejs. This client supports hbase 0.96+

Related

What are some of the most efficient workflows for processing "big data" (250+ GB) from postgreSQL databases?

I am constructing a script that will be processing well-over 250+ GB of data from a single postgreSQL table. The table's shape is ~ 150 cols x 74M rows (150x74M). My goal is to somehow sift through all the data and make sure that each cell entry meets certain criteria that I will be tasked with defining. After the data has been processed I want to pipeline it into an AWS instance. Here are some scenarios I will need to consider:
How can I ensure that each cell entry meets certain criteria of the column it resides in? For example, all entries in the 'Date' column should be in the format 'yyyy-mm-dd', etc.
What tools/languages are best for handling such large data? I use Python and the Pandas module often for DataFrame manipulation, and am aware of the read_sql function, but I think that this much data will simply take too long to process in Python.
I know how to manually process the data chunk-by-chunk in Python, however I think that this is probably too inefficient and the script could take well over 12 hours.
Simply put or TLDR: I'm looking for a simple, streamlined solution to manipulating and performing QC analysis on postgreSQL data.

Theta Sketch (Yahoo) on SnappyData

How to store Theta Sketch (Yahoo) on SnappyData's table instead of write to file? Because I generate billions of sketches every day and need to keep many millions of sketches online for real-time queries. Can anyone help me? Thanks.
Can’t you store these in a column with blob data type ?
If writing out from a spark program and managing the sketches in a DF , I would think df.write.format(“column”).saveAsTable should work.
Else, serialize (sketch.compact().toByteArray()) and store in blob column using sql.

Maximum number of rows with web data connector as data source

How many rows can the web data connector handle to import data into Tableau? Or what is the maximum number of rows which I can generally import?
There are no limitations to how many rows of data you bring back with your web data connector; performance scales pretty well as you bring back more and more rows, so it's really just a matter of how much time you are OK dealing with.
The total performance will be a combination of:
The time it takes for you to retrieve data from the API.
The time it takes our database to create an extract with that data once your web data connector passes it back to Tableau.
#2 will be comparable to the time it would take to create an extract from an Excel file with the same schema and size as the data in your web data connector.
On a related note, the underlying database used (Tableau Data Engine) handles a large number of rows well, but is not as suited for handling a large number of columns, thus our guidance is to bring back less than 60 columns if possible.

How to make MapReduce work with HDFS

This might sound like some stupid question.
I might write a MR code that can take input and output as HDFS locations and then I really don't need to worry about the parallel computing power of hadoop/MR. (Please correct me if I am wrong here).
However if my input is not an HDFS location say I am taking a MongoDB data as input - mongodb://localhost:27017/mongo_hadoop.messages and running my mappers and reducers and storing the data back to mongodb, how will HDFS come into picture. I mean how can I be sure that the 1 GB or any sized big file is first being distributed on HDFS and then parallel computing is being done on it?
Is it that this direct URI will not distribute the data and I need to take the BSON file instead, load it up on HDFS and then give the HDFS path as Input to MR or the framework is smart enough to do this by itself?
I am sorry if the above question is too stupid or not making any sense at all. I am really new to big data but very much excited to dive into this domain.
Thanks.
You are describing DBInputFormat. This is an input format that reads the split from an external database. HDFS only gets involved in setting up the job, but not in actual input. There is also an DBOutputFormat. With an input like DBInputFormat the splits are logical, eg. key ranges.
Read Database Access with Apache Hadoop for a detailed explanation.
Sorry,I am not sure about MongoDb.
If you just wanted to know,how splitting is happening if we are using the data source is a table,then this is my answer when MapRed working with HBase.
we will use TableInputFormat to use an Hbase table in MapRed job.
From the http://hbase.apache.org/book.html#hbase.mapreduce.classpath
7.7. Map-Task Splitting
7.7.1. The Default HBase MapReduce Splitter
When TableInputFormat is used to source an HBase table in a MapReduce job, its splitter will make a map task for each region of the table. Thus, if there are 100 regions in the table, there will be 100 map-tasks for the job - regardless of how many column families are selected in the Scan.
7.7.2. Custom Splitters
For those interested in implementing custom splitters, see the method getSplits in TableInputFormatBase. That is where the logic for map-task assignment resides.
This is a good question, not stupid.
1.
"mongodb://localhost:27017/mongo_hadoop.messages and running my mappers and reducers and storing the data back to mongodb, how will HDFS come into picture. "
Under this situation, u needn't consider hdfs. U needn't do anything related with hdf. Just like write a multiple-thread application with each thread write data to mongodb.
In fact, hdfs is independent to map-reduce, and map-reduce is also independent to hdfs. So, u can use them separately or together as your wish.
2.
if u want to input/output db to map-reduce, u show consider DBInputFormat, but that's another question.
Now, hadoop DBInputFormat only support JDBC. I'm not sure whether some mongodb version of DBInputFormat. Maybe U can search it or implement it by yourself.

realtime querying/aggregating millions of records - hadoop? hbase? cassandra?

I have a solution that can be parallelized, but I don't (yet) have experience with hadoop/nosql, and I'm not sure which solution is best for my needs. In theory, if I had unlimited CPUs, my results should return back instantaneously. So, any help would be appreciated. Thanks!
Here's what I have:
1000s of datasets
dataset keys:
all datasets have the same keys
1 million keys (this may later be 10 or 20 million)
dataset columns:
each dataset has the same columns
10 to 20 columns
most columns are numerical values for which we need to aggregate on (avg, stddev, and use R to calculate statistics)
a few columns are "type_id" columns, since in a particular query we may
want to only include certain type_ids
web application
user can choose which datasets they are interested in (anywhere from 15 to 1000)
application needs to present: key, and aggregated results (avg, stddev) of each column
updates of data:
an entire dataset can be added, dropped, or replaced/updated
would be cool to be able to add columns. But, if required, can just replace the entire dataset.
never add rows/keys to a dataset - so don't need a system with lots of fast writes
infrastructure:
currently two machines with 24 cores each
eventually, want ability to also run this on amazon
I can't precompute my aggregated values, but since each key is independent, this should be easily scalable. Currently, I have this data in a postgres database, where each dataset is in its own partition.
partitions are nice, since can easily add/drop/replace partitions
database is nice for filtering based on type_id
databases aren't easy for writing parallel queries
databases are good for structured data, and my data is not structured
As a proof of concept I tried out hadoop:
created a tab separated file per dataset for a particular type_id
uploaded to hdfs
map: retrieved a value/column for each key
reduce: computed average and standard deviation
From my crude proof-of-concept, I can see this will scale nicely, but I can see hadoop/hdfs has latency I've read that that it's generally not used for real time querying (even though I'm ok with returning results back to users in 5 seconds).
Any suggestion on how I should approach this? I was thinking of trying HBase next to get a feel for that. Should I instead look at Hive? Cassandra? Voldemort?
thanks!
Hive or Pig don't seem like they would help you. Essentially each of them compiles down to one or more map/reduce jobs, so the response cannot be within 5 seconds
HBase may work, although your infrastructure is a bit small for optimal performance. I don't understand why you can't pre-compute summary statistics for each column. You should look up computing running averages so that you don't have to do heavy weight reduces.
check out http://en.wikipedia.org/wiki/Standard_deviation
stddev(X) = sqrt(E[X^2]- (E[X])^2)
this implies that you can get the stddev of AB by doing
sqrt(E[AB^2]-(E[AB])^2). E[AB^2] is (sum(A^2) + sum(B^2))/(|A|+|B|)
Since your data seems to be pretty much homogeneous, I would definitely take a look at Google BigQuery - You can ingest and analyze the data without a MapReduce step (on your part), and the RESTful API will help you create a web application based on your queries. In fact, depending on how you want to design your application, you could create a fairly 'real time' application.
It is serious problem without immidiate good solution in the open source space. In commercial space MPP databases like greenplum/netezza should do.
Ideally you would need google's Dremel (engine behind BigQuery). We are developing open source clone, but it will take some time...
Regardless of the engine used I think solution should include holding the whole dataset in memory - it should give an idea what size of cluster you need.
If I understand you correctly and you only need to aggregate on single columns at a time
You can store your data differently for better results
in HBase that would look something like
table per data column in today's setup and another single table for the filtering fields (type_ids)
row for each key in today's setup - you may want to think how to incorporate your filter fields into the key for efficient filtering - otherwise you'd have to do a two phase read (
column for each table in today's setup (i.e. few thousands of columns)
HBase doesn't mind if you add new columns and is sparse in the sense that it doesn't store data for columns that don't exist.
When you read a row you'd get all the relevant value which you can do avg. etc. quite easily
You might want to use a plain old database for this. It doesn't sound like you have a transactional system. As a result you can probably use just one or two large tables. SQL has problems when you need to join over large data. But since your data set doesn't sound like you need to join, you should be fine. You can have the indexes setup to find the data set and the either do in SQL or in app math.