I want to build a REST API which will be used by both mobile app and also a website. I was wondering how would I go about implementing a simple login system for users?
For a simple website, after checking the username and password, one could set a SESSION variable and have the user "logged in".
Now, REST is stateless so I suspect that the above is not the way to go about. I thought that a possible solution would be to have the server generate and return an access token each time the user logs in, and the client will need to attach this access token to every subsequent request to access protected endpoints.
Is the above a viable solution or what is the industry standard for something like this?
(I found OAuth 2.0 to be overkill, but I could be wrong)
There are several token authentication schemes, but if you're looking for the industry standard, then JWT (JSON Web Token) is the way to go. Here's how the process usually goes:
Client sends his credentials (e.g. username and password) to the server.
The server verifies that the credentials are correct, generates a JWT and returns it to the client. Client saves the token in e.g. localStorage.
For each subsequent request, the client will attach the JWT as a part of the request (usually in the "Authorization" header).
Server will be able to decode the JWT and decide if the client should have access to the requested resource.
Now, some interesting features of JWT come from the fact that there is data encoded in it. Some of it everyone can decode, and some only the server can decode.
So, for example, you could encode the user's id and profile picture in the JWT so that the client can use the data from it, not having to do another request to the server to get his profile.
JWT has embedded info about expiration. The server can set the expiration time.
Another cool thing about JWTs is that they are invalid if changed. Imagine you stole someone's token, but it's expired. You try to change the expire information inside the token to some time in the future, and send it to the server. Server will deem that token invalid, because the contents doesn't match the signature attached, and a valid signature can only be generated by the server.
TL;DR When using google oauth on desktop app, what to save on disk to avoid repeated sign in? Save the google user id? or the token? or an session id?
I'm creating an little desktop app, whitch must authenticate to my REST API server. I'm using google oauth2 for that.
The idea is, that when the desktop app will be authentivated, it generates some data that will be send to my server. The server will store the data with the google user id received from https://www.googleapis.com/userinfo/v2/me.
On the first run of the desktop app, it will open the default browser, with and url for my server and start an local http server. then:
my server will redirect the browser to google (with the clientid, secret, etc.)
user logs in and it will be redirected back to the server with the oauth code
server uses the code to get the token, and then the user profile and stores the token and the profile in db, then redirects the browser to localhost with an paramerer
the desktop app catches the parameter and stores it in an file on the disk
next time the desktop app will start it only reads the file for the parameter to send the generated data with it to my server
my question is: what the parameter should be? the google user id? the oauth token? an generated session id for this desktop app? or something else?
when it will be the google user id, it can conveniently sent the data with the user id and the rest server will just store it in db as is. but I don't think it's safe
when it will be the token, the rest server has to with every request also get the user profile from google with the token. and imho sending the token with every request isn't safe either
generating an session id means to store it with the user and the token on the server and the desktop app will just store it and send it with every request. but I don't know if it's safe to do that
As it's normally the case in software development you have a couple of options depending on requirements.
The mandatory requirement is that your client (desktop) application needs to send something to your REST API so that the API can perform up to two decisions:
Decide who the user is.
Decide if the user is authorized to perform the currently requested action.
The second step may not be applicable if all authenticated users have access to exactly the same set of actions so I'll cover both scenarios.
Also note that, for the first step, sending the Google user ID is not a valid option as that information can be obtained by other parties and does not ensure that the user did authenticate to use your application.
Option 1 - Authentication without fine-grained authorization
Either always sending the id_token or exchanging that token with your custom session identifier both meet the previous requirement, because the id_token contains an audience that clearly indicates the user authenticated to use your application and the session identifier is generated by your application so it can also ensure that. The requests to your API need to use HTTPS, otherwise it will be too easy for the token or session ID to be captured by an attacker.
If you go with the id_token alternative you need to take in consideration that the token will expire; for this, a few options again:
repeat the authentication process another time; if the user still has a session it will indeed be quicker, but you still have to open a browser, local server and repeat the whole steps.
request offline_access when doing the first authentication.
With the last option you should get a refresh token that would allow for your application to have a way to identify the user even after the first id_token expires. I say should, because Google seems to do things a bit different than the specification, for example, the way to obtain the refresh token is by providing access_type=offline instead of the offline_access from OpenID Connect.
Personally, I would go with the session identifier as you'll have more control over lifetime and it may also be simpler.
Option 2 - Authentication + fine-grained authorization
If you need a fine-grained authorization system for your REST API then the best approach would be to authenticate your users with Google, but then have an OAuth 2.0 compliant authorization server that would issue access tokens specific for your API.
For the authorization server implementation, you could either:
Implement it yourself or leverage open source components
⤷ may be time consuming, complex and mitigation of security risks would all fall on you
Use a third-party OAuth 2.0 as a servive authorization provider like Auth0
⤷ easy to get started, depending on amount of usage (the free plan on Auth0 goes up to 7000 users) it will cost you money instead of time
Disclosure: I work at Auth0.
There should be no problem sending the access_token with every request since they are created for that purpose and are thus short lived. You can use the Google Authorization Server endpoint to verify a token instead of using it to do a request for a users profile.
If you're only relying on Google for authentication, here's how your workflow can look:
the client (desktop application, in your case) retrieves the
Google id_token following the user's log in, and then sends it to
the server
the server validates the integrity of said token and extracts the user's profile data; this could mean a simple GET on Google's endpoint to verify this token: https://www.googleapis.com/oauth2/v3/tokeninfo?id_token={0}
On subsequent requests, nothing should change really, except that the user's login process will be automated (since he's given permissions & all), and thus much faster. #danielx is right, there's no problem with sending the token each and every time.
I want to test an API which has the followoing instruction:
This API requires the caller to have an authenticated user web session.
When I login to the application and send a GET request in other tab it works. But I want to send a PUT request now so I cannot use browser. How can I have an authenticated user session while sending request through some other rest client. For eg: postman/ mozilla rest client.
I have tried logging into application through chrome and then using postman rest client. But it did not work. I have also tried Basic authentication providing application username and password.
So, given you mentioned you're using JWT, your API is most likely handing out this token upon logging in. At this moment your web client (javascript?) is probably storing it somewhere (cookie, local storage, session storage… – you can use your browser's dev tools to inspect). For all subsequent requests, this token is attached. If this token is getting persisted as a cookie, the browser itself takes care of attaching it to every request. If it is persisted somewhere else, your client has to "manually" attach this token to every request.
If you want to test your API call, first you need to login and get your hands on the token. Then, for all authenticated requests, you need to attach this token (probably as the Authorization HTTP header).
I want to create an app that will authenticate with my server using oauth.
My question is how will this work?
My client side will communicate using HTTPS with Facebook and get an Access Token. Then it should send it to my server side to authenticate? My server should save the token in the db? How it can validate the token?
how will this work. ?
When the client needs authorization to access some information about the user, the browser (user agent) redirects the resource owner to the OAuth authorization server. There, the user is faced with an authentication dialog (this dialog is not shown if the user is already authenticated), after which he or she is presented an authorization dialog explaining the permissions that the client is requesting, the information that it needs to access or the actions that it needs to do on his or her behalf.
Access Token should send it to my server side to authenticate? or server should save the token in the db?
From what you describe I'd suggest to use a server-side login flow.
-so that the token is already on your server, and doesn't need to be passed from the client. If you're using non-encrypted connections, this could be a security risk.
(after a user successfully signs in, send the user's ID token to your server using HTTPS. Then, on the server, verify the integrity of the ID token and retrieve the user's ID from the sub claim of the ID token. You can use user IDs transmitted in this way to safely identity the currently signed-in user on the backend.)
-See
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/v2.2#login
How to validate token ?
you can follow this link , you will get your step by step solution for an app.
Facebook access token server-side validation for iPhone app
Why do you need both a "code" and a "token" in the Facebook OAuth2 authentication flow as described here: https://developers.facebook.com/docs/authentication/ ?
If you look at the OAuth dialog reference (https://developers.facebook.com/docs/reference/dialogs/oauth/), it seems like you only ever use the token to fetch information about the user, and if you specify the response_type parameter as token or code,token, then you get the token on the first time.
Why do you need to get a "code" and then use the code to get a "token" as opposed to getting the token directly?
I guess I'm misunderstanding something basic about how OAuth works, but it seems you avoid the request to https://graph.facebook.com/oauth/access_token entirely if you get the token the first time with the dialog.
Let us take a simple example to differentiate authentication code vs access token.
You as a user want to try a new Facebook app called Highjack.
So you click on the application and the Highjack app asks you to log into your Facebook account. When you are done, Facebook generates an authentication code for you.
This code is then passed to the Highjack server which uses its own FB client id, FB secret and your authentication code to get an access token.
In the above example the authentication code is confirming you as a user is a valid FB user. But the second steps says "you as a FB user is giving access to the Highjack app for certain resources".
If the Highjack app wanted implicit grant (i.e direct access token), then the access token would be visible to you also since it is being exchanged with the browser. This means you can now call all Facebook APIs on behalf of Highjack using the access token. (You can only use the access token to get your personal information but Facebook has no way of knowing who is calling their APIs.)
Since we have 2 parties (You and Highjack) authenticating with Facebook we have this 2 fold mechanism.
Borrowed shamelessly from Salesforce Documentation:
Authorization Code
An authorization code is a short-lived token representing the user's access grant, created by the authorization server and passed to the client application via the browser. The client application sends the authorization code to the authorization server to obtain an access token and, optionally, a refresh token.
Access Token
The access token is used by the client to make authenticated requests on behalf of the end user. It has a longer lifetime than the authorization code, typically on the order of minutes or hours. When the access token expires, attempts to use it will fail, and a new access token must be obtained via a refresh token.
From the OAuth 2.0 Spec:
The authorization code provides a few important security benefits
such as the ability to authenticate the client, and the transmission
of the access token directly to the client without passing it through
the resource owner's user-agent, potentially exposing it to others,
including the resource owner.
So, basically - the main reason is to limit the # of actors getting the access token.
"token" response is intended primarily for clients that live in the browser (e.g.: JavaScript client).
Answer) You need/want both the code and token for extra security.
According to Nate Barbettini we want the extra step of exchanging the authentication code for the access token, because the authentication code can be used in the front channel (less secure), and the access token can be used in the back channel (more secure).
Thus, the security benefit is that the access token isn't exposed to the browser, and thus cannot be intercepted/grabbed from a browser. We trust the web server more, which communicates via back channels. The access token, which is secret, can then remain on the web server, and not be exposed to the browser (i.e. front channels).
For more information, watch this fantastic video:
OAuth 2.0 and OpenID Connect (in plain English)
https://youtu.be/996OiexHze0?t=26m30s (Start 26 mins)
If you look at the flow of Authorization Code OAuth type, yes, there are actuary two steps:
<user_session_id, client_id> => authorization_code
<client_id, redirect_uri, authorization_code, client_secret> => access_token, refresh_token
In step1: the user tells the OAuth Server that "I want to auth this client (client_id) to access my resource. Here is my authentication (user_session_id or what else)"
In step2: the client (client_id) tells the OAuth server that "I've got the user the authorization (authorization_code), please give me an access token for later access. And this is my authentication (client_id & client_secret)"
You see, if we omit step 2, then there is no guarantee for client authentication. Any client can invoke step1 with a different client_id and get an access token for that client_id instead of its own. That's why we need step2.
If you really want to combine step1 and step2, you can do something like this:
<client_id, redirect_uri, client_secret> => access_token, refresh_token
We use this approach in our Open API Platform, and we haven't find any security problem yet.
BTW, there is actually an Implicit Grant type, that is:
<client_id, redirect_uri> => access_token, refresh_token
It is generally applicable to client only application which have no server backend. In that case, the OAuth server must ensure that the redirect URI belongs to that client (same with the register redirect_uri, for example).
The mix-up came because the user on behalf of himself and not the client app authenticate against the authorization server (i.e. facebook).
Its much simple to secure the client app (with https) then the user-agent (browser).
Here is the original formulation from IETF-oauth (https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel-08#section-3.4):
3.4. Authorization Code
An authorization code represents the intermediate result of a
successful end-user authorization process and is used by the client
to obtain access and refresh token. Authorization codes are sent to
the client's redirection URI instead of tokens for two purposes.
Browser-based flows expose protocol parameters to potential
attackers via URI query parameters (HTTP referrer), the browser
cache, or log file entries and could be replayed. In order to
reduce this threat, short-lived authorization codes are passed
instead of tokens and exchanged for tokens over a more secure
direct connection between client and authorization server.
It is much simpler to authenticate clients during the direct
request between client and authorization server than in the
context of the indirect authorization request. The latter would
require digital signatures.
Theoretically,
Access Tokens cannot tell us if the user has authenticated but auth code does.
Auth code should not be used to gain access to an API but access token should be.
If you have a single page application or mobile application with no or minimum backend, your application may want to access user's FB data directly at frontend. Hence the access token is provided.
In another case, you may want a user to register/login to your app using some external auth service provider like Facebook, Google etc. In this case, your frontend will send the auth code to the backend that can be used to get access token from Facebook at serverside. Now your server becomes enabled to access user's FB data from the server.
Basically, as an extension of Lix's answer, the access code route allows a Resource Owner (i.e. the Facebook User) to revoke authorization for their User Agent (i.e. their browser), e.g. by logging off, without revoking authorization for an offline Client (i.e. Your Application).
If this is not important, then there is no need to use the access code route.
Furthermore, the access code is provided to ensure that the Token provided to a server is actually registered to the Resource Owner (i.e. the Facebook User), and not the User Agent (or a Man-in-the-Middle).
This seems similar to the question of either choosing the implicit vs authorization code grant flow. In fact, here is what looks like an opposite view point?!.
Also, as Drew mentioned,
When the access token expires, attempts to use it will fail, and a new access token must be obtained via a refresh token.
another piece is the refresh token, but I don't see that being explained too well in the FB Docs. If I'm correct, the implicit grant (the direct token) should be really short lived, but that is to-be-enforced and FB.js seems to hide a lot of that (this one I have not looked as deep into).
If I'm correct, the code%20token is an optimization allowing both the User Agent to have a token and allowing for the server to initiate the token exchange process in a single request (as anything over Network IO is considered expensive, especially to a User Agent).
In OAuth 2.0 with facebook, the overall concept is simple as follows.
Step 1. Obtain "Authorization Code" by a GET request
request URI: https://www.facebook.com/dialog/oauth
Params:
response_type=code
client_id={add your "App id" got by registering app}
redirect_uri={add redirect uri defined at the registration of app}
scope={add the scope needed in your app}
Headers: None
Step 2. Obtain the "Access Token" by sending the authorization code as a POST request
URI: https://graph.facebook.com/oauth/access_token
Params:
grant_type=authorization_code
client_id=<add your "App id" got by registering app>
redirect_uri=<add redirect uri defined at the registration of app>
code=<obtained authorization code from previous step>
Headers:
Authorization:Basic encode <App Id:App Secret> with base64
Content-Type:application/json
Step 3. Use the access token got from above step and retrieve user resources
It’s because the access token is given to an AUTHENTICATED client (third-party app) using a shared secret that only FB and the client knows. The only way that the user could directly request the access token is by knowing the shared secret, which would make the secret public and could lead to a man-in-the-middle attack. Further, while FB can guarantee a secure connection to the user, FB can’t guarantee the handoff of the token to the client is secure. However, FB (and OAuth2) does require a secure connection between the client and FB. The access token is tied to the client public ID (usually hashed), which means only the original client application can use it to request the token because the secret is sent along with the authorization code to get the access token.
You recieve a token when the user logs in. But you might want to change the token when you are performing other actions. EG posting as your app/page or posting as a user with offline_access.