This code throws an exception when properties.keySet contains keys that are not present in EXPECTED_IMPORT_KEYS. The val is referenced three times in the code,
val unexpectedKeys = properties.keySet -- EXPECTED_IMPORT_KEYS
if (unexpectedKeys.nonEmpty) {
throw new UnexpectedKeysException(unexpectedKeys)
}
Is there some more elegant way to achieve this in Scala? I am thinking in particular of the repeated val references. Can those repetitions be eliminated?
It might help to know that the unexpectedKeys val is not required after the code completes.
The improvement I am looking for is a reduction from three in the number of times the val occurs. It is not necessary to have a val, that's just my initial formulation.
If you need this often, just define a little helper method:
def emptyOption[A, CC <: Iterable[A]](coll: B with collection.IterableLike[A, CC]) =
if (coll.isEmpty) None else Some(coll)
Then use it like this:
scala> emptyOption(Set[Int]()) foreach (coll => throw new RuntimeException(coll.toString))
scala> emptyOption(Set[Int](1)) foreach (coll => throw new RuntimeException(coll.toString))
java.lang.RuntimeException: Set(1)
You could try:
(properties.keySet -- EXPECTED_IMPORT_KEY) match {
case residual if residual.nonEmpty => throw new UnexpectedKeysException(residual)
case _ =>
}
Related
How can I remove the option so it is just Try[Int] and not Try[Option[Int]]?
val m = Map("a" -> "1a", "b" -> "2")
Try(m.get("a").map(_.trim.toInt))
>>es17: scala.util.Try[Option[Int]] = Failure(java.lang.NumberFormatException: For input string: "1a")
Map#get returns an Option[String], but you can use Map#apply instead, which will return String, in this case.
scala> Try(m("a").trim.toInt)
res3: scala.util.Try[Int] = Failure(java.lang.NumberFormatException: For input string: "1a")
scala> Try(m("b").trim.toInt)
res4: scala.util.Try[Int] = Success(2)
apply throws an exception if the key you're looking for doesn't exist, but Try will catch it, anyway.
This answer goes in more detail about the comment:
I was wondering if there was a way to use flapmap? Your solution works for me, just want to learn of other alternatives.
As you've probably heard, Option and Try are monad instances and while monads are handy to represent sequence of computations, they don't compose with other monads. In other words, we can't compose Option and Try. We need to find a common ground.
The difference in semantics between Option and Try is that Try contains information about the case when a result is absent.
We can go from Try to Option using Try#toOption effectively loosing any failure information we may have.
If we wanted to go the other way, we need to add this information back: ne need to provide a failure reason when a value is absent in an Option. Something like this:
import scala.util.{Try, Success, Failure}
def optionToTry[T](opt:Option[T], failure: => Throwable): Try[T] = opt match {
case Some(v) => Success(v)
case None => Failure(failure)
}
With the help of that function, we can rewrite the original expression as:
val res: Try[Int] = for {
strValue <- optionToTry(m.get("a"), new NoSuchElementException("a"))
value <- Try(strValue.trim.toInt)
} yield value
which uses flatMap behind the scenes to compose the two Try instances like this:
val res = optionToTry(m.get("a"), new NoSuchElementException("a"))
.flatMap(strValue => Try(strValue.trim.toInt))
Note that we could save ourselves a bit of coding by using the unsafe map getter like so:
val res: Try[Int] = for {
strValue <- Try(m("a"))
value <- Try(strValue.trim.toInt)
} yield value
but this version would be computationally more expensive given the cost of handling exceptions in the JVM.
I have a sequence of parameters. For each parameter I have to perform DB query, which may or may not return a result. Simply speaking, I need to stop after the first result is non-empty. Of course, I would like to avoid doing unnecessary calls. The caveat is - I need to have this operation(s) contained as a another Future - or any "most reactive" approach.
Speaking of code:
//that what I have
def dbQuery(p:Param): Future[Option[Result]] = {}
//my list of params
val input = Seq(p1,p2,p3)
//that what I need to implements
def getFirstNonEmpty(params:Seq[Param]): Future[Option[Result]]
I know I can possibly just wrap entire function in yet another Future and execute code sequentially (Await? Brrr...), but that not the cleanest solution.
Can I somehow create lazy initialized collection of futures, like
params.map ( p => FutureWhichWontStartUnlessAskedWhichWrapsOtherFuture { dbQuery(p) }).findFirst(!_.isEmpty())
I believe it's possible!
What do you think about something like this?
def getFirstNonEmpty(params: Seq[Param]): Future[Option[Result]] = {
params.foldLeft(Future.successful(Option.empty[Result])) { (accuFtrOpt, param) =>
accuFtrOpt.flatMap {
case None => dbQuery(param)
case result => Future.successful(result)
}
}
}
This might be overkill, but if you are open to using scalaz we can do this using OptionT and foldMap.
With OptionT we sort of combine Future and Option into one structure. We can get the first of two Futures with a non-empty result using OptionT.orElse.
import scalaz._, Scalaz._
import scala.concurrent.Future
import scala.concurrent.ExecutionContext.Implicits.global
val someF: Future[Option[Int]] = Future.successful(Some(1))
val noneF: Future[Option[Int]] = Future.successful(None)
val first = OptionT(noneF) orElse OptionT(someF)
first.run // Future[Option[Int]] = Success(Some(1))
We could now get the first non-empty Future from a List with reduce from the standard library (this will however run all the Futures) :
List(noneF, noneF, someF).map(OptionT.apply).reduce(_ orElse _).run
But with a List (or other collection) we can't be sure that there is at least one element, so we need to use fold and pass a start value. Scalaz can do this work for us by using a Monoid. The Monoid[OptionT[Future, Int]] we will use will supply the start value and combine the Futures with the orElse used above.
type Param = Int
type Result = Int
type FutureO[x] = OptionT[Future, x]
def query(p: Param): Future[Option[Result]] =
Future.successful{ println(p); if (p > 2) Some(p) else None }
def getFirstNonEmpty(params: List[Param]): Future[Option[Result]] = {
implicit val monoid = PlusEmpty[FutureO].monoid[Result]
params.foldMap(p => OptionT(query(p))).run
}
val result = getFirstNonEmpty(List(1,2,3,4))
// prints 1, 2, 3
result.foreach(println) // Some(3)
This is an old question, but if someone comes looking for an answer, here is my take. I solved it for a use case that required me to loop through a limited number of futures sequentially and stop when the first of them returned a result.
I did not need a library for my use-case, a light-weight combination of recursion and pattern matching was sufficient. Although the question here does not have the same problem as a sequence of futures, looping through a sequence of parameters would be similar.
Here would be the pseudo-code based on recursion.
I have not compiled this, fix the types being matched/returned.
def getFirstNonEmpty(params: Seq[Param]): Future[Option[Result]] = {
if (params.isEmpty) {
Future.successful(None)
} else {
val head = params.head
dbQuery(head) match {
case Some(v) => Future.successful(Some(v))
case None => getFirstNonEmpty(params.tail)
}
}
}
I have to get a list of issues for each file of a given list from a REST API with Scala. I want to do the requests in parallel, and use the Dispatch library for this. My method is called from a Java framework and I have to wait at the end of this method for the result of all the futures to yield the overall result back to the framework. Here's my code:
def fetchResourceAsJson(filePath: String): dispatch.Future[json4s.JValue]
def extractLookupId(json: org.json4s.JValue): Option[String]
def findLookupId(filePath: String): Future[Option[String]] =
for (json <- fetchResourceAsJson(filePath))
yield extractLookupId(json)
def searchIssuesJson(lookupId: String): Future[json4s.JValue]
def extractIssues(json: org.json4s.JValue): Seq[Issue]
def findIssues(lookupId: String): Future[Seq[Issue]] =
for (json <- searchIssuesJson(componentId))
yield extractIssues(json)
def getFilePathsToProcess: List[String]
def thisIsCalledByJavaFramework(): java.util.Map[String, java.util.List[Issue]] = {
val finalResultPromise = Promise[Map[String, Seq[Issue]]]()
// (1) inferred type of issuesByFile not as expected, cannot get
// the type system happy, would like to have Seq[Future[(String, Seq[Issue])]]
val issuesByFile = getFilePathsToProcess map { f =>
findLookupId(f).flatMap { lookupId =>
(f, findIssues(lookupId)) // I want to yield a tuple (String, Seq[Issue]) here
}
}
Future.sequence(issuesByFile) onComplete {
case Success(x) => finalResultPromise.success(x) // (2) how to return x here?
case Failure(x) => // (3) how to return null from here?
}
//TODO transform finalResultPromise to Java Map
}
This code snippet has several issues. First, I'm not getting the type I would expect for issuesByFile (1). I would like to just ignore the result of findLookUpId if it is not able to find the lookUp ID (i.e., None). I've read in various tutorials that Future[Option[X]] is not easy to handle in function compositions and for expressions in Scala. So I'm also curious what the best practices are to handle these properly.
Second, I somehow have to wait for all futures to finish, but don't know how to return the result to the calling Java framework (2). Can I use a promise here to achieve this? If yes, how can I do it?
And last but not least, in case of any errors, I would just like to return null from thisIsCalledByJavaFramework but don't know how (3).
Any help is much appreciated.
Thanks,
Michael
Several points:
The first problem at (1) is that you don't handle the case where findLookupId returns None. You need to decide what to do in this case. Fail the whole process? Exclude that file from the list?
The second problem at (1) is that findIssues will itself return a Future, which you need to map before you can build the result tuple
There's a shortcut for map and then Future.sequence: Future.traverse
If you cannot change the result type of the method because the Java interface is fixed and cannot be changed to support Futures itself you must wait for the Future to be completed. Use Await.ready or Await.result to do that.
Taking all that into account and choosing to ignore files for which no id could be found results in this code:
// `None` in an entry for a file means that no id could be found
def entryForFile(file: String): Future[(String, Option[Seq[Issue]])] =
findLookupId(file).flatMap {
// the need for this kind of pattern match shows
// the difficulty of working with `Future[Option[T]]`
case Some(id) ⇒ findIssues(id).map(issues ⇒ file -> Some(issues))
case None ⇒ Future.successful(file -> None)
}
def thisIsCalledByJavaFramework(): java.util.Map[String, java.util.List[Issue]] = {
val issuesByFile: Future[Seq[(String, Option[Seq[Issue]])]] =
Future.traverse(getFilePathsToProcess)(entryForFile)
import scala.collection.JavaConverters._
try
Await.result(issuesByFile, 10.seconds)
.collect {
// here we choose to ignore entries where no id could be found
case (f, Some(issues)) ⇒ f -> issues
}
.toMap.mapValues(_.asJava).asJava
catch {
case NonFatal(_) ⇒ null
}
}
When building up a collection inside an Option, each attempt to make the next member of the collection might fail, making the collection as a whole a failure, too. Upon the first failure to make a member, I'd like to give up immediately and return None for the whole collection. What is an idiomatic way to do this in Scala?
Here's one approach I've come up with:
def findPartByName(name: String): Option[Part] = . . .
def allParts(names: Seq[String]): Option[Seq[Part]] =
names.foldLeft(Some(Seq.empty): Option[Seq[Part]]) {
(result, name) => result match {
case Some(parts) =>
findPartByName(name) flatMap { part => Some(parts :+ part) }
case None => None
}
}
In other words, if any call to findPartByName returns None, allParts returns None. Otherwise, allParts returns a Some containing a collection of Parts, all of which are guaranteed to be valid. An empty collection is OK.
The above has the advantage that it stops calling findPartByName after the first failure. But the foldLeft still iterates once for each name, regardless.
Here's a version that bails out as soon as findPartByName returns a None:
def allParts2(names: Seq[String]): Option[Seq[Part]] = Some(
for (name <- names) yield findPartByName(name) match {
case Some(part) => part
case None => return None
}
)
I currently find the second version more readable, but (a) what seems most readable is likely to change as I get more experience with Scala, (b) I get the impression that early return is frowned upon in Scala, and (c) neither one seems to make what's going on especially obvious to me.
The combination of "all-or-nothing" and "give up on the first failure" seems like such a basic programming concept, I figure there must be a common Scala or functional idiom to express it.
The return in your code is actually a couple levels deep in anonymous functions. As a result, it must be implemented by throwing an exception which is caught in the outer function. This isn't efficient or pretty, hence the frowning.
It is easiest and most efficient to write this with a while loop and an Iterator.
def allParts3(names: Seq[String]): Option[Seq[Part]] = {
val iterator = names.iterator
var accum = List.empty[Part]
while (iterator.hasNext) {
findPartByName(iterator.next) match {
case Some(part) => accum +:= part
case None => return None
}
}
Some(accum.reverse)
}
Because we don't know what kind of Seq names is, we must create an iterator to loop over it efficiently rather than using tail or indexes. The while loop can be replaced with a tail-recursive inner function, but with the iterator a while loop is clearer.
Scala collections have some options to use laziness to achieve that.
You can use view and takeWhile:
def allPartsWithView(names: Seq[String]): Option[Seq[Part]] = {
val successes = names.view.map(findPartByName)
.takeWhile(!_.isEmpty)
.map(_.get)
.force
if (!names.isDefinedAt(successes.size)) Some(successes)
else None
}
Using ifDefinedAt avoids potentially traversing a long input names in the case of an early failure.
You could also use toStream and span to achieve the same thing:
def allPartsWithStream(names: Seq[String]): Option[Seq[Part]] = {
val (good, bad) = names.toStream.map(findPartByName)
.span(!_.isEmpty)
if (bad.isEmpty) Some(good.map(_.get).toList)
else None
}
I've found trying to mix view and span causes findPartByName to be evaluated twice per item in case of success.
The whole idea of returning an error condition if any error occurs does, however, sound more like a job ("the" job?) for throwing and catching exceptions. I suppose it depends on the context in your program.
Combining the other answers, i.e., a mutable flag with the map and takeWhile we love.
Given an infinite stream:
scala> var count = 0
count: Int = 0
scala> val vs = Stream continually { println(s"Compute $count") ; count += 1 ; count }
Compute 0
vs: scala.collection.immutable.Stream[Int] = Stream(1, ?)
Take until a predicate fails:
scala> var failed = false
failed: Boolean = false
scala> vs map { case x if x < 5 => println(s"Yup $x"); Some(x) case x => println(s"Nope $x"); failed = true; None } takeWhile (_.nonEmpty) map (_.get)
Yup 1
res0: scala.collection.immutable.Stream[Int] = Stream(1, ?)
scala> .toList
Compute 1
Yup 2
Compute 2
Yup 3
Compute 3
Yup 4
Compute 4
Nope 5
res1: List[Int] = List(1, 2, 3, 4)
or more simply:
scala> var count = 0
count: Int = 0
scala> val vs = Stream continually { println(s"Compute $count") ; count += 1 ; count }
Compute 0
vs: scala.collection.immutable.Stream[Int] = Stream(1, ?)
scala> var failed = false
failed: Boolean = false
scala> vs map { case x if x < 5 => println(s"Yup $x"); x case x => println(s"Nope $x"); failed = true; -1 } takeWhile (_ => !failed)
Yup 1
res3: scala.collection.immutable.Stream[Int] = Stream(1, ?)
scala> .toList
Compute 1
Yup 2
Compute 2
Yup 3
Compute 3
Yup 4
Compute 4
Nope 5
res4: List[Int] = List(1, 2, 3, 4)
I think your allParts2 function has a problem as one of the two branches of your match statement will perform a side effect. The return statement is the not-idiomatic bit, behaving as if you are doing an imperative jump.
The first function looks better, but if you are concerned with the sub-optimal iteration that foldLeft could produce you should probably go for a recursive solution as the following:
def allParts(names: Seq[String]): Option[Seq[Part]] = {
#tailrec
def allPartsRec(names: Seq[String], acc: Seq[String]): Option[Seq[String]] = names match {
case Seq(x, xs#_*) => findPartByName(x) match {
case Some(part) => allPartsRec(xs, acc +: part)
case None => None
}
case _ => Some(acc)
}
allPartsRec(names, Seq.empty)
}
I didn't compile/run it but the idea should be there and I believe it is more idiomatic than using the return trick!
I keep thinking that this has to be a one- or two-liner. I came up with one:
def allParts4(names: Seq[String]): Option[Seq[Part]] = Some(
names.map(findPartByName(_) getOrElse { return None })
)
Advantage:
The intent is extremely clear. There's no clutter and there's no exotic or nonstandard Scala.
Disadvantages:
The early return violates referential transparency, as Aldo Stracquadanio pointed out. You can't put the body of allParts4 into its calling code without changing its meaning.
Possibly inefficient due to the internal throwing and catching of an exception, as wingedsubmariner pointed out.
Sure enough, I put this into some real code, and within ten minutes, I'd enclosed the expression inside something else, and predictably got surprising behavior. So now I understand a little better why early return is frowned upon.
This is such a common operation, so important in code that makes heavy use of Option, and Scala is normally so good at combining things, I can't believe there isn't a pretty natural idiom to do it correctly.
Aren't monads good for specifying how to combine actions? Is there a GiveUpAtTheFirstSignOfResistance monad?
Option monad is a great expressive way to deal with something-or-nothing things in Scala. But what if one needs to log a message when "nothing" occurs? According to the Scala API documentation,
The Either type is often used as an
alternative to scala.Option where Left
represents failure (by convention) and
Right is akin to Some.
However, I had no luck to find best practices using Either or good real-world examples involving Either for processing failures. Finally I've come up with the following code for my own project:
def logs: Array[String] = {
def props: Option[Map[String, Any]] = configAdmin.map{ ca =>
val config = ca.getConfiguration(PID, null)
config.properties getOrElse immutable.Map.empty
}
def checkType(any: Any): Option[Array[String]] = any match {
case a: Array[String] => Some(a)
case _ => None
}
def lookup: Either[(Symbol, String), Array[String]] =
for {val properties <- props.toRight('warning -> "ConfigurationAdmin service not bound").right
val logsParam <- properties.get("logs").toRight('debug -> "'logs' not defined in the configuration").right
val array <- checkType(logsParam).toRight('warning -> "unknown type of 'logs' confguration parameter").right}
yield array
lookup.fold(failure => { failure match {
case ('warning, msg) => log(LogService.WARNING, msg)
case ('debug, msg) => log(LogService.DEBUG, msg)
case _ =>
}; new Array[String](0) }, success => success)
}
(Please note this is a snippet from a real project, so it will not compile on its own)
I'd be grateful to know how you are using Either in your code and/or better ideas on refactoring the above code.
Either is used to return one of possible two meaningful results, unlike Option which is used to return a single meaningful result or nothing.
An easy to understand example is given below (circulated on the Scala mailing list a while back):
def throwableToLeft[T](block: => T): Either[java.lang.Throwable, T] =
try {
Right(block)
} catch {
case ex => Left(ex)
}
As the function name implies, if the execution of "block" is successful, it will return "Right(<result>)". Otherwise, if a Throwable is thrown, it will return "Left(<throwable>)". Use pattern matching to process the result:
var s = "hello"
throwableToLeft { s.toUpperCase } match {
case Right(s) => println(s)
case Left(e) => e.printStackTrace
}
// prints "HELLO"
s = null
throwableToLeft { s.toUpperCase } match {
case Right(s) => println(s)
case Left(e) => e.printStackTrace
}
// prints NullPointerException stack trace
Hope that helps.
Scalaz library has something alike Either named Validation. It is more idiomatic than Either for use as "get either a valid result or a failure".
Validation also allows to accumulate errors.
Edit: "alike" Either is complettly false, because Validation is an applicative functor, and scalaz Either, named \/ (pronounced "disjonction" or "either"), is a monad.
The fact that Validation can accumalate errors is because of that nature. On the other hand, / has a "stop early" nature, stopping at the first -\/ (read it "left", or "error") it encounters. There is a perfect explanation here: http://typelevel.org/blog/2014/02/21/error-handling.html
See: http://scalaz.googlecode.com/svn/continuous/latest/browse.sxr/scalaz/example/ExampleValidation.scala.html
As requested by the comment, copy/paste of the above link (some lines removed):
// Extracting success or failure values
val s: Validation[String, Int] = 1.success
val f: Validation[String, Int] = "error".fail
// It is recommended to use fold rather than pattern matching:
val result: String = s.fold(e => "got error: " + e, s => "got success: " + s.toString)
s match {
case Success(a) => "success"
case Failure(e) => "fail"
}
// Validation is a Monad, and can be used in for comprehensions.
val k1 = for {
i <- s
j <- s
} yield i + j
k1.toOption assert_≟ Some(2)
// The first failing sub-computation fails the entire computation.
val k2 = for {
i <- f
j <- f
} yield i + j
k2.fail.toOption assert_≟ Some("error")
// Validation is also an Applicative Functor, if the type of the error side of the validation is a Semigroup.
// A number of computations are tried. If the all success, a function can combine them into a Success. If any
// of them fails, the individual errors are accumulated.
// Use the NonEmptyList semigroup to accumulate errors using the Validation Applicative Functor.
val k4 = (fNel <**> fNel){ _ + _ }
k4.fail.toOption assert_≟ some(nel1("error", "error"))
The snippet you posted seems very contrived. You use Either in a situation where:
It's not enough to just know the data isn't available.
You need to return one of two distinct types.
Turning an exception into a Left is, indeed, a common use case. Over try/catch, it has the advantage of keeping the code together, which makes sense if the exception is an expected result. The most common way of handling Either is pattern matching:
result match {
case Right(res) => ...
case Left(res) => ...
}
Another interesting way of handling Either is when it appears in a collection. When doing a map over a collection, throwing an exception might not be viable, and you may want to return some information other than "not possible". Using an Either enables you to do that without overburdening the algorithm:
val list = (
library
\\ "books"
map (book =>
if (book \ "author" isEmpty)
Left(book)
else
Right((book \ "author" toList) map (_ text))
)
)
Here we get a list of all authors in the library, plus a list of books without an author. So we can then further process it accordingly:
val authorCount = (
(Map[String,Int]() /: (list filter (_ isRight) map (_.right.get)))
((map, author) => map + (author -> (map.getOrElse(author, 0) + 1)))
toList
)
val problemBooks = list flatMap (_.left.toSeq) // thanks to Azarov for this variation
So, basic Either usage goes like that. It's not a particularly useful class, but if it were you'd have seen it before. On the other hand, it's not useless either.
Cats has a nice way to create an Either from exception-throwing code:
val either: Either[NumberFormatException, Int] =
Either.catchOnly[NumberFormatException]("abc".toInt)
// either: Either[NumberFormatException,Int] = Left(java.lang.NumberFormatException: For input string: "abc")
in https://typelevel.org/cats/datatypes/either.html#working-with-exception-y-code