Matlab inverse of large matrix - matlab

This is the equation I am trying to solve:
h = (X'*X)^-1*X'*y
where X is a matrix and y is a vector ((X'X)^-1 is the inverse of X-transpose times X). I have coded this in Matlab as:
h = (X'*X)\X'*y
which I believe is correct. The problem is that X is around 10000x10000, and trying to calculate that inverse is crashing Matlab on even the most powerful computer I can find (16 cores, 24GB RAM). Is there any way to split this up, or a library designed for doing such large inversions?
Thank you.

That looks like a pseudo inverse. Are you perhaps looking for just
h = X \ y;

I generated a random 10,000 by 10,000 matrix X and a random 10,000 by 1 vector y.
I just broke up my computation step by step. (Code shown below)
Computed the transpose and held it in matrix K
Then I computed Matrix A by multiplying K by X
Computed vector b by multiplying K by vector y
Lastly, I used the backslash operator on A and b to solve
I didn't have a problem with the computation. It took a while, but breaking up the operations into the smallest groups possible helped to prevent the computer from being overwhelmed. However, it could be the composition of the matrix that you are using (ie. Sparse, decimals, etc.).
X = randi(2000, [10000, 10000]);
y = randi(2000, 10000, 1);
K = X';
A = K*X;
b = K*y;
S = A\b;

If you have multiple machines at your disposal, and you can recast your problem into the form h = X\y as proposed by #Ben, then you could use distributed arrays. This demo shows how you can do that.

Jordan,
Your equation is exactly the definition for "Moore-Penrose Matrix Inverse".
Check: http://mathworld.wolfram.com/Moore-PenroseMatrixInverse.html
Directly using h = X \ y; should help.
Or check Matlab pinv(X)*y

Related

How to generate a matrix automatically with given n in matlab

For the linear regression, I want to generate the matrix for polynomials of n degree.
if n is 1
X=[x(:), ones(length(x),1)]
if n is 2
X=[x(:).^2 x(:) ones(length(x),1)]
...
if n is 5
X=[x(:).^5 x(:).^4 x(:).^3 x(:).^2 x(:) ones(length(x),1)]
I do not know how to code with matlab if I set n=6 and it will automatically generate the wanted X matrix. Hope you can help me.
This can be easily done with bsxfun:
X = bsxfun(#power, x(:), n:-1:0);
Or, in Matlab versions from R1016b onwards, you can use implicit expansion:
X = x(:).^(n:-1:0);
Check out the polyval function. I believe that will do what you’re looking for.
To get increasing the polynomial to increase in degree, you can increase the length of your p argument using a loop.
If you write edit polyfit you can see how MATLAB have implemented the polyfit command, which is similar to what you are trying to do. In there you will find the code
% Construct the Vandermonde matrix V = [x.^n ... x.^2 x ones(size(x))]
V(:,n+1) = ones(length(x),1,class(x));
for j = n:-1:1
V(:,j) = x.*V(:,j+1);
end
Which constructs the matrix you are interested in. The benefit of this method over the bsxfun is that you only calculate x(:).^n and then saves the intermediary results. Instead of treating all powers as seperate problems, e.g. x(:)^(n-1) as a seperate problem to x(:).^n.

Matlab Multiply A Matrix By Individual Sections of Another Matrix And Get the Diagonal Elements

The title of this post may be a bit confusing. Please allow me to provide a bit of context and then elaborate on what I'm asking. For your reference, the question I'm asking is toward the end and is denoted by bold letters. I provide some code, outlining where I'm currently at in solving the problem, immediately beforehand.
Essentially what I'm trying to do is Kernel Regression, which is usually done using a single test point x and a set of training instances . A reference to this can be found on wikipedia here. The kernel I'm using is the RBF kernel, a Wikipedia reference for which can be found here.
Anyway, I have some code written in Matlab so that this can be done quickly for a single instance of x, which is 1 x p in size. What I'd like to do is make it so I can estimate for numerous points very quickly, say m x p.
For the sake of avoiding notational mixups, I'll let the training instances be denoted Train and the instances I want estimates for as Test: and . It also needs to be mentioned that I want to estimate a vector of numbers for each of the m points. For a single point this vector would be 1 x v in size. Now I need it to be m x v. Therefore, Train will also have a vector of these know values associated with it called TS: . Lastly, we need a vector of sigmas that is 1 x v in size. This is denoted as Sig.
Here's the code I have so far:
%First, we have to get the matrices to equivalent size so we can subtract Train from Test
tm0 = kron(ones(size(Train,1),1),Test) - kron(ones(size(Test,1),1),Train);
%Secondly, we apply the Euclidean norm sq by row and then multiply each of these results by each element (j) in Sig times 1/2j^2
tm3 = exp(-kron(sum((tm0).^2,2),1/2./(Sig.^2)));
Now, at this point tm3 is an (m*n) x v matrix. This is where my question is: I now need to multiply TS' (TS transpose) times each of the n x v-sized segments in tm3 (there are m of these segments), get the diagonal elements of each of these resulting segments (after multiplication one of the m segments will be v x v, so each chunk of diagonal elements will be 1 x v meaning the resulting matrix is m x v) and sum these diagonal elements together to produce an m x 1 sized matrix. Lastly, I will need to divide each entry i in this m x 1 matrix by each of the v elements in the ith row of the diagonal-holding m x v-sized matrix, producing an m x v-sized result matrix.
I hope all of that makes sense. I'm sure there's some kind of trick that can be employed, but I'm just not coming up with it. Any help is greatly appreciated.
Edit 1: I was asked to provide more of an example to help demonstrate what it is that I would like done. The following represent that two matrices I'm talking about, TS and tm3:
As you can see, TS'(TS transpose) is v x n and tm3 is mn x v. In tm3 there are blocks that are of size n x v -- there are m blocks of this size. Notice that the size of TS' is of size v x n. This means that I can multiply TS' by a single block of tm3, which again is of size n x v. This would result in a matrix that is v x v in size. I would like to do this operation -- individually multiplying TS' by each of the n x v-sized blocks of tm3, which would produce m v x v matrices.
From here, though, I would like to obtain the diagonal elements from each of these v x v matrices. So, for a single v x v matrix, denoted using a:
Ultimately, I would to do this for each of the m v x v matrices giving me something that looks like the following, where s is the mth v x v matrix:
If I denote this last matrix as Q, which is m x v in size, it is trivial to sum the elements across the rows to produce the m x 1 vector I was looking for. I will refer to this vector as C. However, I would then like to divide each of these m scalar values by the corresponding row of matrix Q, to produce another m x v matrix:
This is the final matrix I'm looking for. Hopefully this helps make it clear what I'm looking for. Thanks for taking the time to read this!
Thought: I'm pretty sure I could accomplish this by converting tm3 to a cell matrix by doing tc1 = mat2cell(tm3,repmat(length(Train),1,m),length(Sig)), and then put replicate TS m times in another cell matrix tc2 = mat2cell(TS',length(indirectSigma),repmat(length(Train),1,m))'. Finally, I could do operations like tc3 = cellfun(#(a,b) a*b, tc2,tc1,'UniformOutput',false), which would give me m cells filled with the v x v matrices I was looking for. I could proceed from there. However, I'm not sure how fast these cell operations are. Can anybody comment? I'm afraid they might be slow, so I would prefer operations be performed on normal matrices, which I know to be fast. Thanks!

Cannonical Correlation Analysis

I have just started working using CCA in Matlab. I have two vectors X and Y of dimension 60x1920 and 60x1536 with the number of samples being 60 and variables in the different set of vectors being 1920 and 1536 respectively. I want to know do CCA for reducing them to the subspace and then do feature matching.
I am using this commands.
%% DO CCA
[A,B,r,U,V] = canoncorr(X,Y);
The output I get is this :
Name Size Bytes Class Attributes
A 1920x58 890880 double
B 1536x58 712704 double
U 60x58 27840 double
V 60x58 27840 double
r 1x58 464 double
Can anyone please tell me what these variables mean. I have gone over the documentation several times and still is unclear about them. As I understand CCA finds two linear projection matrices Wx and Wy such that the projection of X and Y on Wx and Wy are maximally correlated.
1) Could anyone please tell me which of the following matrices are these?
2) Also how can I find the projected vectors in the learned subspace of CCA?
Any help will be appreciated. Thanks in advance.
As I understand it, with X and Y being your original data matrices, A and B are the sets of coefficients that perform a change of basis to maximally correlate your original data. Your data is represented in the new bases as the matrices U and V.
So to answer your questions:
The projection matrices you are looking for would be A and B since they transform X and Y into the new space.
The resulting projections of X and Y into the new space would be U and V, respectively. (The r vector represents the entries of the correlation matrix between U and V, which is a diagonal matrix.)
The The MATLAB documentation says this transformation can be done with the following formulae, where N is the number of observations:
U = (X-repmat(mean(X),N,1))*A
V = (Y-repmat(mean(Y),N,1))*B
This page lays out the process nicely so you can see what each coefficient means in the transformation process.

Multiply matrices with big size

I wanna to try calculate multiply of three matrix in matlab.
The formation of matrices described below:
L = D^(-1/2) * A * D^(-1/2);
D, A and L are a n*n matrices. A and L are not diagonal or sparse but D is diagonal. In this case n = 16900. When I calculate L in matlab, it takes a long time, about 4 hours!
My question is: Is there a more efficient way to calculate L?
You can use bsxfun twice. I'm not sure it will be faster or not:
v = diag(D).^(-1/2); %// this is the same as diag(D.^(-1/2))
L = bsxfun(#times, v.', bsxfun(#times, A, v));
Instead of using naive matrix multiplication, you can specialised asymptotically faster ones. Strassen's algorithm comes to mind but if I recall correctly it typically has a high constant, despite it's better asymptotic complexity. If you have a very limited set of possible values in your matrices, you can use a variation of the "four Russians" method.

Duplicating a 2d matrix in matlab along a 3rd axis MANY times

I'm looking to duplication a 784x784 matrix in matlab along a 3rd axis. The following code seems to work:
mat = reshape(repmat(mat, 1,10000),784,784,10000);
Unfortunately, it takes so long to run it's worthless (changing the 10,000s to 1000 makes it take a few minutes, and using 10,000 makes my whole machine freeze up practically). is there a faster way to do this?
For reference, I'm looking to use mvnpdf on 10,000 vectors each of length 784, using the same covariance matrix for each. So my final call looks like
mvnpdf(X,mu,mat)
%size(X) = (10000,784), size(mu) = (10000,784), size(mat) = 784,784,10000
If there's a way to do this that's not repeating the covariance matrix 10,000 times, that'd be helpful too. Thanks!
For replication in more than 2 dimensions, you need to supply the replication counts as an array:
out = repmat(mat,[1,1,10000])
Creating a 784x784 matrix 10,000 times isn't going to take advantage of the vectorization in MATLAB, which is going to be more useful for small arrays. Avoiding a for loop also won't help too much, given the following:
The main speedup you can gain here is by computing the inverse of the covariance matrix once, and then computing the pdf yourself. The inverse of sigma takes O(n^3), and you are needlessly doing that 10,000 times. (Also, the square root determinant can be precomputed.) For reference, the PDF of the multivariate normal distribution is computed as follows:
http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Properties
Better to just compute the inverse once, and then compute z = x - mu for each value, then doing z'Sz for each pdf value, and applying a simple function and a constant. But wait! You can vectorize that, too.
I don't have MATLAB in front of me, but this is basically what you need to do, and it'll run in an instant.
s = inv(sigma);
c = -0.5*log(det(s)) - (k/2)*log(2*pi);
z = x - mu; % 10000 x 784 matrix
ans = exp( c - 0.5 .* dot(z*s, z, 2) ); % 10000 x 1 vector