I am finding longest substring in text T, such that it is a prefix of string S. I have made algorithm using suffix tree which provides less complex solution, but since Matlab doesn't use pointers or any other reference, I am stuck at the implementation.
Could somebody please suggest some solution or some alternate way to this problem, possible in Matlab.
Here are a few suggestions for using "pointers" in Matlab:
You can simply use cell array indexes as pointers, to reference cell array elements. This is probably the simplest approach.
You can use a Handle Class for creating classes which you can hold references to. A little more involved but very nice from a software engineering point of view.
As less Matlaby solution, you could write the algorithm in C and use mex to interface between Matlab and your algorithm.
Related
I'm considering to learn Scala for my algorithm development, but first need to know if the language has implemented (or is implementing) complex inverse and pseudo-inverse functions. I looked at the documentation (here, here), and although it states these functions are for real matrices, in the code, I don't see why it wouldn't accept complex matrices.
There's also the following comment left in the code:
pinv for anything that can be transposed, multiplied with that transposed, and then solved
Is this just my wishful thinking, or will it not accept complex matrices?
Breeze implementer here:
I haven't implemented inv etc. for complex numbers yet, because I haven't figured out a good way to store complex numbers unboxed in a way that is compatible with blas and lapack and doesn't break the current API. You can set the call up yourself using netlib java following a similar recipe to the code you linked.
The Matlab function interpn does n-grid interpolation. According to the documentation page:
In a future release, interpn will not accept mixed combinations of row and column vectors for the sample and query grids.
This page provides a bit more information but is still kind of cryptic.
My question is this: Why is this modification being implemented? In particular, are there any pitfalls to using interpn?
I am writing a program in fortran that is supposed to produce similar results to a Matlab program that uses interpn as a crucial component. I'm wondering if the Matlab program might have a problem that is related to this modification.
No, I don't think this indicates that there is any sort of problem with using interpn, or any of the other MATLAB interpolation functions.
Over the last few releases MathWorks has been introducing some new/better functionality for interpolation (for example the griddedInterpolant, scatteredInterpolant and delaunayTriangulation classes). This has been going on in small steps since R2009a, when they replaced the underlying QHULL libraries for computational geometry with CGAL.
It seems likely to me that interpn has for a long time supported an unusual form of input arguments (i.e. mixed row and column vectors to define the sample grid) that is probably a bit confusing for people, hardly ever used, and a bit of a pain for MathWorks to support. So as they move forward with the newer functionality, they're just taking the opportunity to simplify some of the syntaxes supported: it doesn't mean that there is any problem with interpn.
What algorithm is used by the matlab function linopt::minimize ? I have to write the source code for solving a Mixed Integer Linear Programming problem. Please tell me the algorithms I can work upon.
It is not specified in the documentation of Mathlab (c.f. http://www.mathworks.fr/fr/help/symbolic/mupad_ref/linopt-minimize.html). However, they do provide some references at the end of the page (you should have a look there).
My guesses are the following (based on my humble knowledge regarding state-of-the-art methods for solving LP/MILP) :
1-If the problem is not MILP, we usually use the simplex algorithm (http://en.wikipedia.org/wiki/Simplex_algorithm).
2-If the problem is MILP (i.e. there is some integer variables), one usually use a Branch and Bound algorithm in which we might use simplex for improving the search (we call it Branch and Cut)
P.S. This is not an exhaustive response since other methods can be used but the above are the most known ones.
I need to construct an interpolating function from a 2D array of data. The reason I need something that returns an actual function is, that I need to be able to evaluate the function as part of an expression that I need to numerically integrate.
For that reason, "interp2" doesn't cut it: it does not return a function.
I could use "TriScatteredInterp", but that's heavy-weight: my grid is equally spaced (and big); so I don't need the delaunay triangularisation.
Are there any alternatives?
(Apologies for the 'late' answer, but I have some suggestions that might help others if the existing answer doesn't help them)
It's not clear from your question how accurate the resulting function needs to be (or how big, 'big' is), but one approach that you could adopt is to regress the data points that you have using a least-squares or Kalman filter-based method. You'd need to do this with a number of candidate function forms and then choose the one that is 'best', for example by using an measure such as MAE or MSE.
Of course this requires some idea of what the form underlying function could be, but your question isn't clear as to whether you have this kind of information.
Another approach that could work (and requires no knowledge of what the underlying function might be) is the use of the fuzzy transform (F-transform) to generate line segments that provide local approximations to the surface.
The method for this would be:
Define a 2D universe that includes the x and y domains of your input data
Create a 2D fuzzy partition of this universe - chosing partition sizes that give the accuracy you require
Apply the discrete F-transform using your input data to generate fuzzy data points in a 3D fuzzy space
Pass the inverse F-transform as a function handle (along with the fuzzy data points) to your integration function
If you're not familiar with the F-transform then I posted a blog a while ago about how the F-transform can be used as a universal approximator in a 1D case: http://iainism-blogism.blogspot.co.uk/2012/01/fuzzy-wuzzy-was.html
To see the mathematics behind the method and extend it to a multidimensional case then the University of Ostravia has published a PhD thesis that explains its application to various engineering problems and also provides an example of how it is constructed for the case of a 2D universe: http://irafm.osu.cz/f/PhD_theses/Stepnicka.pdf
If you want a function handle, why not define f=#(xi,yi)interp2(X,Y,Z,xi,yi) ?
It might be a little slow, but I think it should work.
If I understand you correctly, you want to perform a surface/line integral of 2-D data. There are ways to do it but maybe not the way you want it. I had the exact same problem and it's annoying! The only way I solved it was using the Surface Fitting Tool (sftool) to create a surface then integrating it.
After you create your fit using the tool (it has a GUI as well), it will generate an sftool object which you can then integrate in (2-D) using quad2d
I also tried your method of using interp2 and got the results (which were similar to the sfobject) but I had no idea how to do a numerical integration (line/surface) with the data. Creating thesfobject and then integrating it was much faster.
It was the first time I do something like this so I confirmed it using a numerically evaluated line integral. According to Stoke's theorem, the surface integral and the line integral should be the same and it did turn out to be the same.
I asked this question in the mathematics stackexchange, wanted to do a line integral of 2-d data, ended up doing a surface integral and then confirming the answer using a line integral!
I want to write an implementation of a (not a binary) tree and and run some algorithms on it. The reason for using the matlab is that the rest of all programs are in matlab and it would be usful for some analysis and plotting. From an initial search in matlab i found that there aren't thing like pointers in matlab. So I'd like to know the best ( in terms on convinience) possible way to do this in matlab ? or any other ways ?
You can do this with MATLAB objects but you must make sure you use handle objects and not value objects because your nodes will contain cross-references to other nodes (i.e. parent, next sibling, first child).
This question is very old but still open. So I would just like to point readers to this implementation in plain MATLAB made by yours truly. Here is a tutorial that walks you through its use.
Matlab is very well suited to handle any kind of graphs (not only trees) represented as adjacency matrix or incidence matrix.
Matrices (representing graphs) can be either dense or sparse, depending on the properties of your graphs.
Last but not least, graph theory and linear algebra are in very fundamental ways related to each other see for example, so Matlab will be able to provide for you a very nice platform to harness such relationships.