Is low latency mode safe to use with Linux serial ports? - linux-device-driver

Is it safe to use the low_latency tty mode with Linux serial ports? The tty_flip_buffer_push function is documented that it "must not be called from IRQ context if port->low_latency is set." Nevertheless, many low-level serial port drivers call it from an ISR whether or not the flag is set. For example, the mpc52xx driver calls flip buffer unconditionally after each read from its FIFO.
A consequence of the low latency flip buffer in the ISR is that the line discipline driver is entered within the IRQ context. My goal is to get latency of one millisecond or less, reading from a high speed mpc52xx serial port. Setting low_latency acheives the latency goal, but it also violates the documented precondition for tty_flip_buffer_push.

This question was asked on linux-serial on Fri, 19 Aug 2011.
No, low latency is not safe in general.
However, in the particular case of 3.10.5 low_latency is safe.
The comments above tty_flip_buffer_push read:
"This function must not be called from IRQ context if port->low_latency is set."
However, the code (3.10.5, drivers/tty/tty_buffer.c) contradicts this:
void tty_flip_buffer_push(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
unsigned long flags;
spin_lock_irqsave(&buf->lock, flags);
if (buf->tail != NULL)
buf->tail->commit = buf->tail->used;
spin_unlock_irqrestore(&buf->lock, flags);
if (port->low_latency)
flush_to_ldisc(&buf->work);
else
schedule_work(&buf->work);
}
EXPORT_SYMBOL(tty_flip_buffer_push);
The use of spin_lock_irqsave/spin_unlock_irqrestore makes this code safe to call from interrupt context.
There is a test for low_latency and if it is set, flush_to_ldisc is called directly. This flushes the flip buffer to the line discipline immediately, at the cost of making the interrupt processing longer. The flush_to_ldisc routine is also coded to be safe for use in interrupt context. I guess that an earlier version was unsafe.
If low_latency is not set, then schedule_work is called. Calling schedule_work is the classic way to invoke the "bottom half" handler from the "top half" in interrupt context. This causes flush_to_ldisc to be called from the "bottom half" handler at the next clock tick.
Looking a little deeper, both the comment and the test seem to be in Alan Cox's original e0495736 commit of tty_buffer.c. This commit was a re-write of earlier code, so it seems that at one time there wasn't a test. Whoever added the test and fixed flush_to_ldisc to be interrupt-safe did not bother to fix the comment.
So, always believe the code, not the comments.
However, in the same code in 3.12-rc* (as of October 23, 2013) it looks like the problem was opened again when the spin_lock_irqsave's in flush_to_ldisc were removed and mutex_locks were added. That is, setting UPF_LOW_LATENCY in the serial_struct flags and calling the TIOCSSERIAL ioctl will again cause "scheduling while atomic".
The latest update from the maintainer is:
On 10/19/2013 07:16 PM, Jonathan Ben Avraham wrote:
> Hi Peter,
> "tty_flip_buffer_push" is called from IRQ handlers in most drivers/tty/serial UART drivers.
>
> "tty_flip_buffer_push" calls "flush_to_ldisc" if low_latency is set.
> "flush_to_ldisc" calls "mutex_lock" in 3.12-rc5, which cannot be used in interrupt context.
>
> Does this mean that setting "low_latency" cannot be used safely in 3.12-rc5?
Yes, I broke low_latency.
Part of the problem is that the 3.11- use of low_latency was unsafe; too many shared
data areas were simply accessed without appropriate safeguards.
I'm working on fixing it but probably won't make it for 3.12 final.
Regards,
Peter Hurley
So, it looks like you should not depend on low_latency unless you are sure that you are never going to change your kernel from a version that supports it.
Update: February 18, 2014, kernel 3.13.2
Stanislaw Gruszka wrote:
Hi,
setserial has low_latency option which should minimize receive latency
(scheduler delay). AFAICT it is used if someone talk to external device
via RS-485/RS-232 and need to have quick requests and responses . On
kernel this feature was implemented by direct tty processing from
interrupt context:
void tty_flip_buffer_push(struct tty_port *port)
{
struct tty_bufhead *buf = &port->buf;
buf->tail->commit = buf->tail->used;
if (port->low_latency)
flush_to_ldisc(&buf->work);
else
schedule_work(&buf->work);
}
But after 3.12 tty locking changes, calling flush_to_ldisc() from
interrupt context is a bug (we got scheduling while atomic bug report
here: https://bugzilla.redhat.com/show_bug.cgi?id=1065087 )
I'm not sure how this should be solved. After Peter get rid all of those
race condition in tty layer, we probably don't want go back to use
spin_lock's there. Maybe we can create WQ_HIGHPRI workqueue and schedule
flush_to_ldisc() work there. Or perhaps users that need to low latency,
should switch to thread irq and prioritize serial irq to meat
retirements. Anyway setserial low_latency is now broken and all who use
this feature in the past can not do this any longer on 3.12+ kernels.
Thoughts ?
Stanislaw

A patch has been posted to LKML to address the problem. It removes the generic code for handling low_latency but keeps the parameter for the low-level drivers to use.
http://www.kernelhub.org/?p=2&msg=419071
I tried forcing low_latency on Linux 3.12 with serial console. The kernel was very unstable. If preemption was enabled, it would hang after a few minutes of use.
So the answer for now is to stay away.

Related

how does the operating system treat few interrupts and keep processes going?

I'm learning computer organization and structure (I'm using Linux OS with x86-64 architecture). we've studied that when an interrupt occurs in user mode, the OS is notified and it switches between the user stack and the kernel stack by loading the kernels rsp from the TSS, afterwards it saves the necessary registers (such as rip) and in case of software interrupt it also saves the error-code. in the end, just before jumping to the adequate handler routine it zeroes the TF and in case of hardware interrupt it zeroes the IF also. I wanted to ask about few things:
the error code is save in the rip, so why loading both?
if I consider a case where few interrupts happen together which causes the IF and TF to turn on, if I zero the TF and IF, but I treat only one interrupt at a time, aren't I leave all the other interrupts untreated? in general, how does the OS treat few interrupts that occur at the same time when using the method of IDT with specific vector for each interrupt?
does this happen because each program has it's own virtual memory and thus the interruption handling processes of all the programs are unrelated? where can i read more about it?
how does an operating system keep other necessary progresses running while handling the interrupt?
thank you very much for your time and attention!
the error code is save in the rip, so why loading both?
You're misunderstanding some things about the error code. Specifically:
it's not generated by software interrupts (e.g. instructions like int 0x80)
it is generated by some exceptions (page fault, general protection fault, double fault, etc).
the error code (if used) is not saved in the RIP, it's pushed on the stack so that the exception handler can use it to get more information about the cause of the exception
2a. if I consider a case where few interrupts happen together which causes the IF and TF to turn on, if I zero the TF and IF, but I treat only one interrupt at a time, aren't I leave all the other interrupts untreated?
When the IF flag is clear, mask-able IRQs (which doesn't include other types of interrupts - software interrupts, exceptions) are postponed (not disabled) until the IF flag is set again. They're "temporarily untreated" until they're treated later.
The TF flag only matters for debugging (e.g. single-step debugging, where you want the CPU to generate a trap after every instruction executed). It's only cleared in case the process (in user-space) was being debugged, so that you don't accidentally continue debugging the kernel itself; but most processes aren't being debugged like this so most of the time the TF flag is already clear (and clearing it when it's already clear doesn't really do anything).
2b. in general, how does the OS treat few interrupts that occur at the same time when using the method of IDT with specific vector for each interrupt? does this happen because each program has it's own virtual memory and thus the interruption handling processes of all the programs are unrelated? where can i read more about it?
There's complex rules that determine when an interrupt can interrupt (including when it can interrupt another interrupt). These rules mostly only apply to IRQs (not software interrupts that the kernel won't ever use itself, and not exceptions which are taken as soon as they occur). Understanding the rules means understanding the IF flag and the interrupt controller (e.g. how interrupt vectors and the "task priority register" in the local APIC influence the "processor priority register" in the local APIC, which determines which groups of IRQs will be postponed when the IF flag is set). Information about this can be obtained from Intel's manuals, but how Linux uses it can only be obtained from Linux source code and/or Linux specific documentation.
On top of that there's "whatever mechanisms and practices the OS felt like adding on top" (e.g. deferred procedure calls, tasklets, softIRQs, additional stack management) that add more complications (which can also only be obtained from Linux source code and/or Linux specific documentation).
Note: I'm not a Linux kernel developer so can't/won't provide links to places to look for Linux specific documentation.
how does an operating system keep other necessary progresses running while handling the interrupt?
A single CPU can't run 2 different pieces of code (e.g. an interrupt handler and user-space code) at the same time. Instead it runs them one at a time (e.g. runs user-space code, then switches to an IRQ handler for very short amount of time, then returns to the user-space code). Because the IRQ handler only runs for a very short amount of time it creates the illusion that everything is happening at the same time (even though it's not).
Of course when you have multiple CPUs, different CPUs can/do run different pieces of code at the same time.

Can we edit callback function HAL_UART_TxCpltCallback for our convenience?

I am a newbie to both FreeRTOS and STM32. I want to know how exactly callback function HAL_UART_TxCpltCallback for HAL_UART_Transmit_IT works ?
Can we edit that that callback function for our convenience ?
Thanks in Advance
You call HAL_UART_Transmit_IT to transmit your data in the "interrupt" (non-blocking) mode. This call returns immediately, likely well before your data gets fully trasmitted.
The sequence of events is as follows:
HAL_UART_Transmit_IT stores a pointer and length of the data buffer you provide. It doesn't perform a copy, so your buffer you passed needs to remain valid until callback gets called. For example it cannot be a buffer you'll perform delete [] / free on before callbacks happen or a buffer that's local in a function you're going to return from before a callback call.
It then enables TXE interrupt for this UART, which happens every time the DR (or TDR, depending on STM in use) is empty and can have new data written
At this point interrupt happens immediately. In the IRQ handler (HAL_UART_IRQHandler) a new byte is put in the DR (TDR) register which then gets transmitted - this happens in UART_Transmit_IT.
Once this byte gets transmitted, TXE interrupt gets triggered again and this process repeats until reaching the end of the buffer you've provided.
If any error happens, HAL_UART_ErrorCallback will get called, from IRQ handler
If no errors happened and end of buffer has been reached, HAL_UART_TxCpltCallback is called (from HAL_UART_IRQHandler -> UART_EndTransmit_IT).
On to your second question whether you can edit this callback "for convenience" - I'd say you can do whatever you want, but you'll have to live with the consequences of modifying code what's essentially a library:
Upgrading HAL to newer versions is going to be a nightmare. You'll have to manually re-apply all your changes you've done to that code and test them again. To some extent this can be automated with some form of version control (git / svn) or even patch files, but if the code you've modified gets changed by ST, those patches will likely not apply anymore and you'll have to do it all by hand again. This may require re-discovering how the implementation changed and doing all your work from scratch.
Nobody is going to be able to help you as your library code no longer matches code that everyone else has. If you introduced new bugs by modifying library code, no one will be able to reproduce them. Even if you provided your modifications, I honestly doubt many here will bother to apply your changes and test them in practice.
If I was to express my personal opinion it'd be this: if you think there's bugs in the HAL code - fix them locally and report them to ST. Once they're fixed in future update, fully overwrite your HAL modifications with updated official release. If you think HAL code lacks functionality or flexibility for your needs, you have two options here:
Suggest your changes to ST. You have to keep in mind that HAL aims to serve "general purpose" needs.
Just don't use HAL for this specific peripheral. This "mixed" approach is exactly what I do personally. In some cases functionality provided by HAL for given peripheral is "good enough" to serve my needs (in my case one example is SPI where I fully rely on HAL) while in some other cases - such as UART - I use HAL only for initialization, while handling transmission myself. Even when you decide not to use HAL functions, it can still provide some value - you can for example copy their IRQ handler to your code and call your functions instead. That way you at least skip some parts in development.

What exactly happens when an OS goes into kernel mode?

I find that neither my textbooks or my googling skills give me a proper answer to this question. I know it depends on the operating system, but on a general note: what happens and why?
My textbook says that a system call causes the OS to go into kernel mode, given that it's not already there. This is needed because the kernel mode is what has control over I/O-devices and other things outside of a specific process' adress space. But if I understand it correctly, a switch to kernel mode does not necessarily mean a process context switch (where you save the current state of the process elsewhere than the CPU so that some other process can run).
Why is this? I was kinda thinking that some "admin"-process was switched in and took care of the system call from the process and sent the result to the process' address space, but I guess I'm wrong. I can't seem to grasp what ACTUALLY is happening in a switch to and from kernel mode and how this affects a process' ability to operate on I/O-devices.
Thanks alot :)
EDIT: bonus question: does a library call necessarily end up in a system call? If no, do you have any examples of library calls that do not end up in system calls? If yes, why do we have library calls?
Historically system calls have been issued with interrupts. Linux used the 0x80 vector and Windows used the 0x2F vector to access system calls and stored the function's index in the eax register. More recently, we started using the SYSENTER and SYSEXIT instructions. User applications run in Ring3 or userspace/usermode. The CPU is very tricky here and switching from kernel mode to user mode requires special care. It actually involves fooling the CPU to think it was from usermode when issuing a special instruction called iret. The only way to get back from usermode to kernelmode is via an interrupt or the already mentioned SYSENTER/EXIT instruction pairs. They both use a special structure called the TaskStateSegment or TSS for short. These allows to the CPU to find where the kernel's stack is, so yes, it essentially requires a task switch.
But what really happens?
When you issue an system call, the CPU looks for the TSS, gets its esp0 value, which is the kernel's stack pointer and places it into esp. The CPU then looks up the interrupt vector's index in another special structure the InterruptDescriptorTable or IDT for short, and finds an address. This address is where the function that handles the system call is. The CPU pushes the flags register, the code segment, the user's stack and the instruction pointer for the next instruction that is after the int instruction. After the systemcall has been serviced, the kernel issues an iret. Then the CPU returns back to usermode and your application continues as normal.
Do all library calls end in system calls?
Well most of them do, but there are some which don't. For example take a look at memcpy and the rest.

how does the processor know an instruction is making a system call

system call -- It is an instruction that generates an interrupt that causes OS to gain
control of processor.
so if a running process issue a system call (e.g. create/terminate/read/write etc), a interrupt is generated which cause the KERNEL TO TAKE CONTROL of the processor which then executes the required interrupt handler routine. correct?
then can anyone tell me how the processor known that this instruction is supposed to block the process, go to privileged mode, and bring kernel code.
I mean as a programmer i would just type stream1=system.io.readfile(ABC) or something, which translates to open and read file ABC.
Now what is monitoring the execution of this process, is there a magical power in the cpu to detect this?
As from what i have read a PROCESSOR can only execute only process at a time, so WHERE IS THE MONITOR PROGRAM RUNNING?
How can the KERNEL monitor if a system call is made or not when IT IS NOT IN RUNNING STATE!!
or does the computer have a SYSTEM CALL INSTRUCTION TABLE which it compares with before executing any instruction?
please help
thanku
The kernel doesn't monitor the process to detect a system call. Instead, the process generates an interrupt which transfers control to the kernel, because that's what software-generated interrupts do according to the instruction set reference manual.
For example, on Unix the process stuffs the syscall number in eax and runs an an int 0x80 instruction, which generates interrupt 0x80. The CPU reacts to this by looking in the Interrupt Descriptor Table to find the kernel's handler for that interrupt. This handler is the entry point for system calls.
So, to call _exit(0) (the raw system call, not the glibc exit() function which flushes buffers) in 32-bit x86 Linux:
movl $1, %eax # The system-call number. __NR_exit is 1 for 32-bit
xor %ebx,%ebx # put the arg (exit status) in ebx
int $0x80
Let's analyse each questions you have posed.
Yes, your understanding is correct.
See, if any process/thread wants to get inside kernel there are only two mechanisms, one is by executing TRAP machine instruction and other is through interrupts. Usually interrupts are generated by the hardware, so any other process/threads wants to get into kernel it goes through TRAP. So as usual when TRAP is executed by the process it issues interrupt (mostly software interrupt) to your kernel. Along with trap you will also mentions the system call number, this acts as input to your interrupt handler inside kernel. Based on system call number your kernel finds the system call function inside system call table and it starts to execute that function. Kernel will set the mode bit inside cs register as soon as it starts to handle interrupts to intimate the processor as current instruction is a privileged instruction. By this your processor will comes to know whether the current instruction is privileged or not. Once your system call function finished it's execution your kernel will execute IRET instruction. Which will clear mode bit inside CS register to inform whatever instruction from now inwards are from user mode.
There is no magical power inside processor, switching between user and kernel context makes us to think that processor is a magical thing. It is just a piece of hardware which has the capability to execute tons of instructions at a very high rate.
4..5..6. Answers for all these questions are answered in above cases.
I hope I've answered your questions up to some extent.
The interrupt controller signals the CPU that an interrupt has occurred, passes the interrupt number (since interrupts are assigned priorities to handle simultaneous interrupts) thus the interrupt number to determine wich handler to start. The CPu jumps to the interrupt handler and when the interrupt is done, the program state reloaded and resumes.
[Reference: Silberchatz, Operating System Concepts 8th Edition]
What you're looking for is mode bit. Basically there is a register called cs register. Normally its value is set to 3 (user mode). For privileged instructions, kernel sets its value to 0. Looking at this value, processor knows which kind of instruction it is. If you're interested digging more please refer this excellent article.
Other Ref.
Where is mode bit
Modern hardware supports multiple user sessions. If your hw supports multi user mode, i provides a mechanism called interrupt. An interrupt basically stops the execution of the current code to execute other code (e.g kernel code).
Which code is executed is decided by parameters, that get passed to the interrupt, by the code that issues the interrupt. The hw will increase the run level, load the kernel code into the memory and forces the cpu to execute this code. When the kernel code returns, it again directly informs the hw and the run level gets decreased.
The HW will then restore the cpu state before the interrupt and set the cpu the the next line in the code that started the interrupt. Done.
Since the code is actively calling the hw, which again actively calls the kernel, no monitoring needs to be done by the kernel itself.
Side note:
Try to keep your question short. Make clear what you want. The first answer was correct for the question you posted, you just didnt phrase it well. Make clear that you are new to the topic and need a detailed explanation of basic concepts instead of explaining what you understood so far and don't use caps lock.
Please accept the answer cnicutar provided. thank you.

How could an assembly OUTB function cause a triple fault?

In my systems programming class we are working on a small, simple hobby OS. Personally I have been working on an ATA hard disk driver. I have discovered that a single line of code seems to cause a fault which then immediately reboots the system. The code in question is at the end of my interrupt service routine for the IDE interrupts. Since I was using the IDE channels, they are sent through the slave PIC (which is cascaded through the master). Originally my code was only sending the end-of-interrupt byte to the slave, but then my professor told me that I should be sending it to the master PIC as well.
SO here is my problem, when I un-comment the line which sends the EOI byte to the master PIC, the systems triple faults and then reboots. Likewise, if I leave it commented the system stays running.
_outb( PIC_MASTER_CMD_PORT, PIC_EOI ); // this causes (or at least sets off) a triple fault reboot
_outb( PIC_SLAVE_CMD_PORT, PIC_EOI );
Without seeing the rest of the system, is it possible for someone to explain what could possibly be happening here?
NOTE: Just as a shot in the dark, I replaced the _outb() call with another _outb() call which just made sure that the interrupts were enable for the IDE controller, however, the generated assembly would have been almost identical. This did not cause a fault.
*_outb() is a wrapper for the x86 OUTB instruction.
What is so special about my function to send EOI to the master PIC that is an issue?
I realize without seeing the code this may be impossible to answer, but thanks for looking!
Triple faults usually point to a stack overflow or odd stack pointer. When a fault or interrupt occurs, the system immediately tries to push some more junk onto the stack (before invoking the fault handler). If the stack is hosed, this will cause another fault, which then tries to push more stuff on the stack, which causes another fault. At this point, the system gives up on you and reboots.
I know this because I actually have a silly patent (while working at Dell about 20 years ago) on a way to cause a CPU reset without external hardware (used to be done through the keyboard controller):
MOV ESP,1
PUSH EAX ; triple fault and reset!
An OUTB instruction can't cause a fault on its own. My guess is you are re-enabling an interrupt, and the interrupt gets triggered while something is wrong with your stack.
When you re-enable the PIC, are you doing it with the CPU's interrupt flag set, or cleared (ie. are you doing it sometime after a CLI opcode, or, sometime after an STI opcode)?
Assuming that the CPU's interrupt flag is enabled, your act of re-enabling the PIC allows any pending interrupts to reach the CPU: which would interrupt your code, dispatch to a vector specified by the IDT, etc.
So I expect that it's not your opcode that's directly causing the fault: rather, what's faulting is code that's run as the result of an interrupt which happens as a result of your re-enabling the PIC.