mod_cluster & jboss: out of band garbage collection? - jboss

I'm reading about how jboss communicates load factors and lifecycle events to mod_cluster to effectively load balance a cluster. In the ruby on rails world unicorn and passenger 4 do out-of-band garbage collection, where one instance is taken out of the cluster temporarily to do its gc then put back in, so that response latency isnt as affected by gc. Does jboss & mod_cluster do the same thing, or something that is effectively the same?

Well...if you are experiencing garbage-collection related problems in your production environment (like, let's say, an absolutely unresponsive system for 10 minutes), you have rather a JVM/application configuration related issue.
mod_cluster, as a smart load balancer, calculates the load on your worker nodes and sends it back to httpd. This load might consist of one or more of these metrics:
busyness
heap
cpu
requests
receive-traffic
send-traffic
sessions
I would think that an intensive garbage collection would be easily picked up by cpu metric anyhow.
On the other hand...
If you really want to address your garbage collection problem in this fashion, It would be better to have it done via mod_cluster-manager console, where one can temporarily disable a node. As soon as the node is disabled, there won't be any new sessions created on it, so once all sessions are drained, you might have a node without any active requests.
An alternative way would be writing your own load metric that will somehow determine whether the JVM is getting ready for GC and if it is so, it will affect the Load being sending. Yet, I find this being a rather dirty trick.
HTH

Related

Unpredictable API requests latency spikes in my ASP.NET Web API published to Azure Web App

We have a production system which is an ASP.NET Web API (classic, not .NET Core) application published to Azure. Data storage is Azure SQL Database and we use Entity Framework to access the data. API has a medium load, 10-60 requests per second and upper_90 latency is 100-200 ms which is a target latency is our case. Some time ago we noticed that approximately every 20-30 minutes our services stalls and latency jumps to approximately 5-10 sec. All requests start to be slow for about a minute and then the system recovers by itself. Same time no requests are being dropped, they all just take longer to execute. for a short period of time (usually 1 minute).
We start to see the following picture at our HTTP requests telemetry (Azure):
We can also see a correlation to with our Azure SQL Database metrics, such as DTU (drop) and connections (increase):
We've analyzed the server and didn't see any correlation with the host (we have just one host) CPU/Memory usage, it's stable at 20-30% CPU usage level and 50% memory usage.
We also have an alternative source of telemetry which shows the same behavior. Our telemetry measures API latency and database metrics such as active connection count and pooled connection count (ADO.NET Connection Pool):
What is interesting, that every system stall is accompanied by a pooled connection quantity raise. And our tests show, the more connection pooled, the longer you spend waiting on a new connection from that pool to execute your next database operation. We analyzed a few suggestions but were unable to prove or disprove any of them:
ADO.NET connection leak (all our db access happens in a using statement with proper connection disposal/return to pool)
Socket/Port Exhaustion - where unable to properly track telemetry on that metric
CPU/Memory bottleneck - charts shows there is none
DTU (database units) bottleneck - charts shows there is none
As of now we are trying to identify the possible culprit of this behavior. Unfortunately, we cannot identify the changes which led to it becuase of missing telemetry, so now the only way to deal with the issue is to properly diagnose it. And, of course, we can only reproduce it in production, under permanent load (even when load is not high like 10 requests a second).
What are the possible causes for this behavior and what is the proper way to diagnose and troubleshoot it?
There can be several possible reasons:
The problem could be in your application code, create a staging environment and re-run your test with profiler tool telemetry (i.e. using YourKit .NET Profiler) - this will allow you to detect the heaviest methods, largest objects, slowest DB queries, etc.Also do a load test on your API with JMeter.
I would recommend you to try Kudu Process API to look at the list of currently running processes, and get more info about them list their CPU time.
The article for how to monitor CPU using in Azure App service are shown below:
https://azure.microsoft.com/en-in/documentation/articles/web-sites-monitor/
https://azure.microsoft.com/en-in/documentation/articles/app-insights-web-monitor-performance/
We ended up separating a few web apps hosted at a single App Service Plan. Even though the metrics were not showing us any bottle neck with the CPU on the app, there are other apps which cause CPU usage spikes and as a result Connection Pool Queue growth with huge Latency spikes.
When we checked the App Service Plan usage and compared it to the Database plan usage, it became clear that the bottleneck is in the App Service Plan. It's still hard to explain while CPU bottleneck causes uneven latency spikes but we decided to separate the most loaded web app to a separate plan and deal with it in isolation. After the separation the app behave normally, no CPU or Latency spikes and it look very stable (same picture as between spikes):
We will continue to analyze the other apps and eventually will find the culprit but at this point the mission critical web app is in isolation and very stable. The lesson here is to monitor not only Web App resources usage but also a hosting App Service Plan which could have other apps consuming resources (CPU, Memory)

How to identify the network performance issue?

I am a little confuse about my message server's network bottleneck issue. I can obviously found the problem caused by the a lot of network operation, but I am not sure why and how to identify it.
Currently we are using GCP as our VM and 4 core/8G RAM for our message server. Redis & Cassandra is in other server at the same place. The problem happened at the network operation to the redis server and cassandra server.
I need to handle 3000+ requests at once to save data to redis and 12000+ requests to cassandra server.
My task consuming all my CPU power and the CPU usage down right after I merge the redis request and cassandra request to kind of batch request. The penalty is I have to delay my data saving.
What I want to know is how can I know the network's capability of my system. How many requests within 1 second is a reasonable task?. As my testing, this is obviously true that the bottleneck is the network operation, but I can't prove it. I can't even know how to estimate a reasonable network usage of my system? Are there some tools or other thing that can help to my make sure my network's problem? Or this is just a error config of my GCP system?
Thanks,
Eric
There is a "monitoring" label in each instance where you can check through graphs values like instance CPU, Network and RAM usage.
But to further check the performance of your instance you should use StackDriver Logging1 and Monitoring2. It stores a lot of information from the internal servers and the system performance. for that you will need to install the agent in the instance. It also stores information about your Load Balancer3, in case you are using one with your web application, which is very advisable since it scale your resources up or down with intelligent Autoscaling.
But in order to test out your network you will need to use some third party tool to overload the network. There are multiple tools to achieve this, like JMeter.

How to monitor (micro)services?

I have a set of services. Every service contains some components.
Some of them are stateless, some of them are stateful, some are synchronous, some are asynchronous.
I used different approaches to monitoring and alerting.
Log-based alerting and metrics gathering. New Relic based. Own bicycle.
Basically, atm I am looking for a way, how to generalize and aggregate important metrics for all services in single place. One of things, I want is that we monitor more products, than separate services.
As an end result I see it as a single dashboard with small amount of widgets, but looking at those widgets I would be able to say for sure, if services are usable to end-customer.
Probably someone can recommend me some approach/methodology. Or give a reference to some best practices.
I like what you're trying to achieve! A service is not production-ready unless it's thoroughly monitored.
I believe what your're describing goes into the topics of health-checking and metrics.
... I would be able to say for sure, if services are usable to end-customer.
That however will require a little of both ;-) To ensure you're currently fulfilling your SLA, you have to make sure, that your services are all a) running and b) perform as requested. With both problems I suggest to look at the StatsD toolchain. Initially developed by Etsy, it has become the de-facto standard for gathering metrics.
To ensure all your services are running, we're relaying Kubernetes. It takes our description for what should run, be reachable from outside etc. and hosts that on our infrastructure. It also makes sure, that should things die - that they will be restarted. It helps with things like auto-scaling etc. as well! Awesome tooling and kudos to Google!
The way it ensures that is with health-checks. There are multiple ways how you can ensure your service node booted by Kubernetes is alive and kicking (namely HTTP calls and CLI scripts but this should be a modular thing should you need anything else!) If Kubernetes detects unhealthy nodes it will immediately phase them out and start another node instead.
Now, making sure, all your services perform as expected you'll need to gather some metrics. For all of our services (and all individual endpoints), we gather a few metrics via StatsD like:
Requests/sec
number of errors returned (404, etc...)
Response times (Average, Median, Percentiles depending on the services SLA)
Payload size (Average)
sometimes the number of concurrent requests per endpoint, the number of instances currently running
general metrics like the hosts current CPU and memory usage and uptime.
We gather a lot more metrics but that's about the bottom line. Since StatsD has become more of a "protocol specification" than a concrete product there are a myriad of collector, front- and backends to choose from. They help you visualize your systems state and many of them feature alerts of something or some combination of metrics go beyond their thresholds.
Let me know, if this was helpfull!
There's at least 3 types of things you will need to monitor: the host where the service is deployed, the component itself and the SLAs and some of them depend on the software stack you're using as well as the architecture.
With that said, you could for example use Nagios to monitor the hardware where the services are deployed, Splunk for the services metrics/SLAs as well as for any errors that might occur. You can also use SNMP packages in case something goes wrong and you have a more sophisticated support structure, this would be yours triggers. Without knowing how your infrastructure/services are set up it is complicated to go into deeper details.

Memcached and virtual memory

According to this thread (not very reliable, I know) memcached does not use the disk, not even virtual memory.
My questions are:
Is this true?
If so, how does memcached ensures that the memory he gets assigned never overflows to disk?
memcached avoids going to swap through two mechanisms:
Informing the system administrators that the machines should never go to swap. This allows the admins to maybe not configure swap space for the machine (seems like a bad idea to me) or configure the memory limits of the running applications to ensure that nothing ever goes into swap. (Not just memcached, but all applications.)
The mlockall(2) system call can be used (-k) to ensure that all the process's memory is always locked in memory. This is mediated via the setrlimit(2) RLIMIT_MEMLOCK control, so admins would need to modify e.g. /etc/security/limits.conf to allow the memcached user account to lock a lot more memory than is normal. (Locked memory is mediated to prevent untrusted user accounts from starving the rest of the system of free memory.)
Both these steps are fair assuming the point of the machine is to run memcached and perhaps very little else. This is often a fair assumption, as larger deployments will dedicate several (or many) machines to memcached.
You configure memcached to use a fixed amount of memory. When that memory is full memcached just deletes old data to stay under the limit. It is that simple.

Some fundamental but important questions about web development?

I've developed some web-based applications till now using PHP, Python and Java. But some fundamental but very important questions are still beyond my knowledge, so I made this post to get help and clarification from you guys.
Say I use some programming language as my backend language(PHP/Python/.Net/Java, etc), and I deploy my application with a web server(apache/lighttpd/nginx/IIS, etc). And suppose at time T, one of my page got 100 simultaneous requests from different users. So my questions are:
How does my web server handle such 100 simultaneous requests? Will web server generate one process/thread for each request? (if yes, process or thread?)
How does the interpreter of the backend language do? How will it handle the request and generate the proper html? Will the interpreter generate a process/thread for each request?(if yes, process or thread?)
If the interpreter will generate a process/thread for each request, how about these processes(threads)? Will they share some code space? Will they communicate with each other? How to handle the global variables in the backend codes? Or they are independent processes(threads)? How long is the duration of the process/thread? Will they be destroyed when the request is handled and the response is returned?
Suppose the web server can only support 100 simultaneous requests, but now it got 1000 simultaneous requests. How does it handle such situation? Will it handle them like a queue and handle the request when the server is available? Or other approaches?
I read some articles about Comet these days. And I found long connection may be a good way to handle the real-time multi-users usecase. So how about long connection? Is it a feature of some specific web servers or it is available for every web server? Long connection will require a long-existing interpreter process?
EDIT:
Recently I read some articles about CGI and fastcgi, which makes me know the approach of fastcgi should be a typical approach to hanlde request.
the protocol multiplexes a single transport connection between several independent FastCGI requests. This supports applications that are able to process concurrent requests using event-driven or multi-threaded programming techniques.
Quoted from fastcgi spec, which mentioned connection which can handle several requests, and can be implemented in mutli-threaded tech. I'm wondering this connection can be treated as process and it can generate several threads for each request. If this is true, I become more confused about how to handle the shared resource in each thread?
P.S thank Thomas for the advice of splitting the post to several posts, but I think the questions are related and it's better to group them together.
Thank S.Lott for your great answer, but some answers to each question are too brief or not covered at all.
Thank everyone's answer, which makes me closer to the truth.
Update, Spring 2018:
I wrote this response in 2010 and since then, a whole lot of things have changed in the world of a web backend developer. Namely, the advent of the "cloud" turning services such as one-click load balancers and autoscaling into commodities have made the actual mechanics of scaling your application much easier to get started.
That said, what I wrote in this article in 2010 still mostly holds true today, and understanding the mechanics behind how your web server and language hosting environment actually works and how to tune it can save you considerable amounts of money in hosting costs. For that reason, I have left the article as originally written below for anyone who is starting to get elbows deep in tuning their stack.
1. Depends on the webserver (and sometimes configuration of such). A description of various models:
Apache with mpm_prefork (default on unix): Process per request. To minimize startup time, Apache keeps a pool of idle processes waiting to handle new requests (which you configure the size of). When a new request comes in, the master process delegates it to an available worker, otherwise spawns up a new one. If 100 requests came in, unless you had 100 idle workers, some forking would need to be done to handle the load. If the number of idle processes exceeds the MaxSpare value, some will be reaped after finishing requests until there are only so many idle processes.
Apache with mpm_event, mpm_worker, mpm_winnt: Thread per request. Similarly, apache keeps a pool of idle threads in most situations, also configurable. (A small detail, but functionally the same: mpm_worker runs several processes, each of which is multi-threaded).
Nginx/Lighttpd: These are lightweight event-based servers which use select()/epoll()/poll() to multiplex a number of sockets without needing multiple threads or processes. Through very careful coding and use of non-blocking APIs, they can scale to thousands of simultaneous requests on commodity hardware, provided available bandwidth and correctly configured file-descriptor limits. The caveat is that implementing traditional embedded scripting languages is almost impossible within the server context, this would negate most of the benefits. Both support FastCGI however for external scripting languages.
2. Depends on the language, or in some languages, on which deployment model you use. Some server configurations only allow certain deployment models.
Apache mod_php, mod_perl, mod_python: These modules run a separate interpreter for each apache worker. Most of these cannot work with mpm_worker very well (due to various issues with threadsafety in client code), thus they are mostly limited to forking models. That means that for each apache process, you have a php/perl/python interpreter running inside. This severely increases memory footprint: if a given apache worker would normally take about 4MB of memory on your system, one with PHP may take 15mb and one with Python may take 20-40MB for an average application. Some of this will be shared memory between processes, but in general, these models are very difficult to scale very large.
Apache (supported configurations), Lighttpd, CGI: This is mostly a dying-off method of hosting. The issue with CGI is that not only do you fork a new process for handling requests, you do so for -every- request, not just when you need to increase load. With the dynamic languages of today having a rather large startup time, this creates not only a lot of work for your webserver, but significantly increases page load time. A small perl script might be fine to run as CGI, but a large python, ruby, or java application is rather unwieldy. In the case of Java, you might be waiting a second or more just for app startup, only to have to do it all again on the next request.
All web servers, FastCGI/SCGI/AJP: This is the 'external' hosting model of running dynamic languages. There are a whole list of interesting variations, but the gist is that your application listens on some sort of socket, and the web server handles an HTTP request, then sends it via another protocol to the socket, only for dynamic pages (static pages are usually handled directly by the webserver).
This confers many advantages, because you will need less dynamic workers than you need the ability to handle connections. If for every 100 requests, half are for static files such as images, CSS, etc, and furthermore if most dynamic requests are short, you might get by with 20 dynamic workers handling 100 simultaneous clients. That is, since the normal use of a given webserver keep-alive connection is 80% idle, your dynamic interpreters can be handling requests from other clients. This is much better than the mod_php/python/perl approach, where when your user is loading a CSS file or not loading anything at all, your interpreter sits there using memory and not doing any work.
Apache mod_wsgi: This specifically applies to hosting python, but it takes some of the advantages of webserver-hosted apps (easy configuration) and external hosting (process multiplexing). When you run it in daemon mode, mod_wsgi only delegates requests to your daemon workers when needed, and thus 4 daemons might be able to handle 100 simultaneous users (depends on your site and its workload)
Phusion Passenger: Passenger is an apache hosting system that is mostly for hosting ruby apps, and like mod_wsgi provides advantages of both external and webserver-managed hosting.
3. Again, I will split the question based on hosting models for where this is applicable.
mod_php, mod_python, mod_perl: Only the C libraries of your application will generally be shared at all between apache workers. This is because apache forks first, then loads up your dynamic code (which due to subtleties, is mostly not able to use shared pages). Interpreters do not communicate with each other within this model. No global variables are generally shared. In the case of mod_python, you can have globals stay between requests within a process, but not across processes. This can lead to some very weird behaviours (browsers rarely keep the same connection forever, and most open several to a given website) so be very careful with how you use globals. Use something like memcached or a database or files for things like session storage and other cache bits that need to be shared.
FastCGI/SCGI/AJP/Proxied HTTP: Because your application is essentially a server in and of itself, this depends on the language the server is written in (usually the same language as your code, but not always) and various factors. For example, most Java deployment use a thread-per-request. Python and its "flup" FastCGI library can run in either prefork or threaded mode, but since Python and its GIL are limiting, you will likely get the best performance from prefork.
mod_wsgi/passenger: mod_wsgi in server mode can be configured how it handles things, but I would recommend you give it a fixed number of processes. You want to keep your python code in memory, spun up and ready to go. This is the best approach to keeping latency predictable and low.
In almost all models mentioned above, the lifetime of a process/thread is longer than a single request. Most setups follow some variation on the apache model: Keep some spare workers around, spawn up more when needed, reap when there are too many, based on a few configurable limits. Most of these setups -do not- destroy a process after a request, though some may clear out the application code (such as in the case of PHP fastcgi).
4. If you say "the web server can only handle 100 requests" it depends on whether you mean the actual webserver itself or the dynamic portion of the webserver. There is also a difference between actual and functional limits.
In the case of Apache for example, you will configure a maximum number of workers (connections). If this number of connections was 100 and was reached, no more connections will be accepted by apache until someone disconnects. With keep-alive enabled, those 100 connections may stay open for a long time, much longer than a single request, and those other 900 people waiting on requests will probably time out.
If you do have limits high enough, you can accept all those users. Even with the most lightweight apache however, the cost is about 2-3mb per worker, so with apache alone you might be talking 3gb+ of memory just to handle the connections, not to mention other possibly limited OS resources like process ids, file descriptors, and buffers, and this is before considering your application code.
For lighttpd/Nginx, they can handle a large number of connections (thousands) in a tiny memory footprint, often just a few megs per thousand connections (depends on factors like buffers and how async IO apis are set up). If we go on the assumption most your connections are keep-alive and 80% (or more) idle, this is very good, as you are not wasting dynamic process time or a whole lot of memory.
In any external hosted model (mod_wsgi/fastcgi/ajp/proxied http), say you only have 10 workers and 1000 users make a request, your webserver will queue up the requests to your dynamic workers. This is ideal: if your requests return quickly you can keep handling a much larger user load without needing more workers. Usually the premium is memory or DB connections, and by queueing you can serve a lot more users with the same resources, rather than denying some users.
Be careful: say you have one page which builds a report or does a search and takes several seconds, and a whole lot of users tie up workers with this: someone wanting to load your front page may be queued for a few seconds while all those long-running requests complete. Alternatives are using a separate pool of workers to handle URLs to your reporting app section, or doing reporting separately (like in a background job) and then polling its completion later. Lots of options there, but require you to put some thought into your application.
5. Most people using apache who need to handle a lot of simultaneous users, for reasons of high memory footprint, turn keep-alive off. Or Apache with keep-alive turned on, with a short keep-alive time limit, say 10 seconds (so you can get your front page and images/CSS in a single page load). If you truly need to scale to 1000 connections or more and want keep-alive, you will want to look at Nginx/lighttpd and other lightweight event-based servers.
It might be noted that if you do want apache (for configuration ease of use, or need to host certain setups) you can put Nginx in front of apache, using HTTP proxying. This will allow Nginx to handle keep-alive connections (and, preferably, static files) and apache to handle only the grunt work. Nginx also happens to be better than apache at writing logfiles, interestingly. For a production deployment, we have been very happy with nginx in front of apache(with mod_wsgi in this instance). The apache does not do any access logging, nor does it handle static files, allowing us to disable a large number of the modules inside apache to keep it small footprint.
I've mostly answered this already, but no, if you have a long connection it doesn't have to have any bearing on how long the interpreter runs (as long as you are using external hosted application, which by now should be clear is vastly superior). So if you want to use comet, and a long keep-alive (which is usually a good thing, if you can handle it) consider the nginx.
Bonus FastCGI Question You mention that fastcgi can multiplex within a single connection. This is supported by the protocol indeed (I believe the concept is known as "channels"), so that in theory a single socket can handle lots of connections. However, it is not a required feature of fastcgi implementors, and in actuality I do not believe there is a single server which uses this. Most fastcgi responders don't use this feature either, because implementing this is very difficult. Most webservers will make only one request across a given fastcgi socket at a time, then make the next across that socket. So you often just have one fastcgi socket per process/thread.
Whether your fastcgi application uses processing or threading (and whether you implement it via a "master" process accepting connections and delegating or just lots of processes each doing their own thing) is up to you; and varies based on capabilities of your programming language and OS too. In most cases, whatever is the default the library uses should be fine, but be prepared to do some benchmarking and tuning of parameters.
As to shared state, I recommend you pretend that any traditional uses of in-process shared state do not exist: even if they may work now, you may have to split your dynamic workers across multiple machines later. For state like shopping carts, etc; the db may be the best option, session-login info can be kept in securecookies, and for temporary state something akin to memcached is pretty neat. The less you have reliant on features that share data (the "shared-nothing" approach) the bigger you can scale in the future.
Postscript: I have written and deployed a whole lot of dynamic applications in the whole scope of setups above: all of the webservers listed above, and everything in the range of PHP/Python/Ruby/Java. I have extensively tested (using both benchmarking and real-world observation) the methods, and the results are sometimes surprising: less is often more. Once you've moved away from hosting your code in the webserver process, You often can get away with a very small number of FastCGI/Mongrel/mod_wsgi/etc workers. It depends on how much time your application stays in the DB, but it's very often the case that more processes than 2*number of CPU's will not actually gain you anything.
How does my web server handle such 100 simultaneous requests? Does web server generate one process/thread for each request? (if yes, process or thread?)
It varies. Apache has both threads and processes for handling requests. Apache starts several concurrent processes, each one of which can run any number of concurrent threads. You must configure Apache to control how this actually plays out for each request.
How does the interpreter of the backend language do? How will it handle the request and generate the proper html? Will the interpreter generate a process/thread for each request?(if yes, process or thread?)
This varies with your Apache configuration and your language. For Python one typical approach is to have daemon processes running in the background. Each Apache process owns a daemon process. This is done with the mod_wsgi module. It can be configured to work several different ways.
If the interpreter will generate a process/thread for each request, how about these processes(threads)? Will they share some code space? Will they communicate with each other? How to handle the global variables in the backend codes? Or they are independent processes(threads)? How long is the duration of the process/thread? Will they be destroyed when the request is handled and the response is returned?
Threads share the same code. By definition.
Processes will share the same code because that's the way Apache works.
They do not -- intentionally -- communicate with each other. Your code doesn't have a way to easily determine what else is going on. This is by design. You can't tell which process you're running in, and can't tell what other threads are running in this process space.
The processes are long-running. They do not (and should not) be created dynamically. You configure Apache to fork several concurrent copies of itself when it starts to avoid the overhead of process creation.
Thread creation has much less overhead. How Apaches handles threads internally doesn't much matter. You can, however, think of Apache as starting a thread per request.
Suppose the web server can only support 100 simultaneous requests, but now it got 1000 simultaneous requests. How does it handle such situation? Will it handle them like a queue and handle the request when the server is available? Or other approaches?
This is the "scalability" question. In short -- how will performance degrade as the load increases. The general answer is that the server gets slower. For some load level (let's say 100 concurrent requests) there are enough processes available that they all run respectably fast. At some load level (say 101 concurrent requests) it starts to get slower. At some other load level (who knows how many requests) it gets so slow you're unhappy with the speed.
There is an internal queue (as part of the way TCP/IP works, generally) but there's no governor that limits the workload to 100 concurrent requests. If you get more requests, more threads are created (not more processes) and things run more slowly.
To begin with, requiring detailed answers to all your points is a bit much, IMHO.
Anyway, a few short answers about your questions:
#1
It depends on the architecture of the server. Apache is a multi-process, and optionally also, multi-threaded server. There is a master process which listens on the network port, and manages a pool of worker processes (where in the case of the "worker" mpm each worker process has multiple threads). When a request comes in, it is forwarded to one of the idle workers. The master manages the size of the worker pool by launching and terminating workers depending on the load and the configuration settings.
Now, lighthttpd and nginx are different; they are so-called event-based architectures, where multiple network connections are multiplexed onto one or more worker processes/threads by using the OS support for event multiplexing such as the classic select()/poll() in POSIX, or more scalable but unfortunately OS-specific mechanisms such as epoll in Linux. The advantage of this is that each additional network connection needs only maybe a few hundred bytes of memory, allowing these servers to keep open tens of thousands of connections, which would generally be prohibitive for a request-per-process/thread architecture such as apache. However, these event-based servers can still use multiple processes or threads in order to utilize multiple CPU cores, and also in order to execute blocking system calls in parallel such as normal POSIX file I/O.
For more info, see the somewhat dated C10k page by Dan Kegel.
#2
Again, it depends. For classic CGI, a new process is launched for every request. For mod_php or mod_python with apache, the interpreter is embedded into the apache processes, and hence there is no need to launch a new process or thread. However, this also means that each apache process requires quite a lot of memory, and in combination with the issues I explained above for #1, limits scalability.
In order to avoid this, it's possible to have a separate pool of heavyweight processes running the interpreters, and the frontend web servers proxy to the backends when dynamic content needs to be generated. This is essentially the approach taken by FastCGI and mod_wsgi (although they use custom protocols and not HTTP so perhaps technically it's not proxying). This is also typically the approach chosen when using the event-based servers, as the code for generating the dynamic content seldom is re-entrant which it would need to be in order to work properly in an event-based environment. Same goes for multi-threaded approaches as well if the dynamic content code is not thread-safe; one can have, say, frontend apache server with the threaded worker mpm proxying to backend apache servers running PHP code with the single-threaded prefork mpm.
#3
Depending on at which level you're asking, they will share some memory via the OS caching mechanism, yes. But generally, from a programmer perspective, they are independent. Note that this independence is not per se a bad thing, as it enables straightforward horizontal scaling to multiple machines. But alas, some amount of communication is often necessary. One simple approach is to communicate via the database, assuming that one is needed for other reasons, as it usually is. Another approach is to use some dedicated distributed memory caching system such as memcached.
#4
Depends. They might be queued, or the server might reply with some suitable error code, such as HTTP 503, or the server might just refuse the connection in the first place. Typically, all of the above can occur depending on how loaded the server is.
#5
The viability of this approach depends on the server architecture (see my answer to #1). For an event-based server, keeping connections open is no big issue, but for apache it certainly is due to the large amount of memory required for every connection. And yes, this certainly requires a long-running interpreter process, but as described above, except for classic CGI this is pretty much granted.
Web servers are multi-threaded environment; besides using application scoped variables, a user request doesn't interact with other threads.
So:
Yes, a new thread will be created for every user
Yes, HTML will be processed for every request
You'll need to use application scoped variables
If you get more requests than you can deal, they will be put on queue. If they got served before configured timeout period, user will get his response, or a "server busy" like error.
Comet isn't specific for any server/language. You can achieve same result by quering your server every n seconds, without dealing with other nasty threads issues.