What does changing ODES in simulink mean - simulink

I have implemented two controllers in simulink; PID and fuzzy controller. odes for implementation of both controllers are different. PID is implemented in ode45 while fuzzy controller is implemented in ode14x. This is done to achieve the desired response i.e convergence to reference value. But still I am unable to understand what does changing ode mean....I know there are different methods of solving odes but exactly what I am doing when I am changing ode in simulink.... guide me.

ODEs are solvers. Simulink computes everything step by step, so ODEs define the length of the step (nest point will be 0.0001 secs later or 0.5 later?) adn also made the calculus of the numerical derivatives.
For example ODE1 is Euler. Derivatives are the simplest ones : dF(n)=(F(n)-F(n-1))/At and At (step of time) is always a constant defined by the user.
Of course ODEs are not always perfect nor always work in all cases, that's why Matlab has so many of them. and yes, several times you PID will work in a ODE but not in other.
The Nightmare of Simulink debugging is change your model for days until you realised it was the ODE.... So many hours wasted...

A moderately detailed description/comparison of the solvers can be found at
http://www.mathworks.com/help/simulink/ug/choosing-a-solver.html

Related

Matlab: How do i tell if the ode is stiff or not?

How do i check if the ode is stiff or not? Unfortunately, my problem is large so I cannot run different ode matlab solvers and compare their finish time. I hope I can tell from the ode itself directly. What are some characteristics of a stiff ode?
Unfortunately it is extremly hard to tell if the ode is stiff or not without running some integration methods especially if it's a large problem.
You could try to reduce the problem to a simpler one, e.g. Taylor-expansion and only taking the first 2 or 3 terms into consideration. Solving this problem could give you a hint whether your problem is stiff or not.
Note that I assumed your problem would be continous. Then according to Weierstraß' approximation theorem a series of polynomials (your Taylor expansion) would converge uniformly to your problem. This means if the problem with taylor series is stiff your original problem might be too.

Managing of Navier-Stokes PDEs by means of SBF in Dymola

Has anyone tried to implement the Navier Stokes Partial Differential Equations (PDE) in Modelica?
I found the method of the spatial basis functions (SBF) which by means of numerical modifications gets Ordinary Differential Equations (ODE) that could be handled by Dymola.
Regards,
Victor
The aim of the method I was saying before is to convert PDEs in ODEs, so the issues with the CFL coefficient would disappear, the problem is that the Modelica.Fluids elements just define the equations in function of the variables in both ends of each component.
i.e dp=port_a.p-port_b.p
but with that sort of methodology, the variables such as pressure, density, mass flow... would be function also of the surrounding components... it would be a kind of massive interaction between all the components,
I would like to see an example in Modelica, because I hardly haven't found information about that topic linked to Modelica.
Modelica is a language for modeling behavior described by DAEs. As such, as long as you can create a system of ODEs, you should be able to express your problem in Modelica.
However, if your PDEs are hyperbolic, the wave dynamics in the equations might cause some issues with simulation. This is because the CFL condition imposes limits on time steps that an ordinary differential equation solver will be unaware of. If the solver includes error control, it will probably manage to get a solutions but may run quite slow because it won't know how to explicitly limit the simulation step size. If it doesn't include error control and it violates the CFL condition, the system will go unstable. Note, this only applies to systems where the CFL condition applies.

Fit data with a numerical ode solution (on Matlab)

I am looking for a way to fit my experimental data by a theoretical model which is described by a non-linear differential equation.
Unfortunately this latter can only be solved numerically (by solving this second degree, non-linear differential equation).
I manage to solve the differential equation for a set of parameters using the ode45 Matlab solver but now I want to find the proper fit parameters of the model. Also, I may have to mention that my ode45 is initiated at z=zmax (max being large so I can assume it is infinity) by y(zmax)=y0 and yprime(zmax)=yprime0 and I solve backward (from zmax to z=0).
I am quite new to this kind of numerical problems, are there classical ways to solve such problems?
Does anyone knows if there is a Matlab procedure which would help me solve this? On which principles is it based/constructed? (if possible I'd like to know the theoretical trick to solve this problem in a smart way, not by trying all the possible sets of parameters which would be very time consuming (I have 5 fit parameters!).
Thank you for your precious help!
You have facy methods in the Optimization Toolbox. In case you don't have access to it, you could do it manually by:
Selecting a cost function between the experimental and model data. For example, mean-squared-error.
Doing heuristic optimization of the cost function. For example, Nelder-Mead method.

Is it possible to improve speed in ODE solvers from matlab? (ode45 ode15s etc)

I wrote a code to solve a system using ode45 and ode15s in matlab. I am wondering if I can improve the speed of the code using multiple core (or parallel code) in my script.
Anyone have tried this ??
Thanks
No, you can't.
All numerical integrators, ode45 and friends included, use some form of iterative scheme to solve the user-implemented (coupled) non-linear (partial) differential equations.
Each new step in the iterative schemes of ode45/15s/.. (to compute the new state of the system) depends on the previous step (the old state of the system), therefore, these numerical integrators cannot be parallelized effectively.
The only speedup you can do that's likely to have a big impact is to optimize your implementation of the differential equation.
From my experience, the only way to use multiple cores for ODE suite solvers in MATLAB is to use "parfor loop" to start multiple computations together at the same time, your single computation not be any faster, but you can start many with different parameters and have multiple solutions after that long wait. So if you need to start ODE many times that might speed up your work.
To speed up one ODE function it also a good idea to play with RelTol and AbsTol settings (changes time form seconds to hours), using Jpattern option can also be very helpful (my almost tridiagonal pattern made it run twice as fast). If your differential equation is simple maybe try to compile it first, or at least vectorize (I used to write some part of code in Java and then point MATLAB to use compiled .class file). Obviously the length of your solution vector plays important role, so don't make it more than a few hounded.

Solving a non-polynomial equation numerically

I've got a problem with my equation that I try to solve numerically using both MATLAB and Symbolic Toolbox. I'm after several source pages of MATLAB help, picked up a few tricks and tried most of them, still without satisfying result.
My goal is to solve set of three non-polynomial equations with q1, q2 and q3 angles. Those variables represent joint angles in my industrial manipulator and what I'm trying to achieve is to solve inverse kinematics of this model. My set of equations looks like this: http://imgur.com/bU6XjNP
I'm solving it with
numeric::solve([z1,z2,z3], [q1=x1..x2,q2=x3..x4,q3=x5..x6], MultiSolutions)
Changing the xn constant according to my needs. Yet I still get some odd results, the q1 var is off by approximately 0.1 rad, q2 and q3 being off by ~0.01 rad. I don't have much experience with numeric solve, so I just need information, should it supposed to look like that?
And, if not, what valid option do you suggest I should take next? Maybe transforming this equation to polynomial, maybe using a different toolbox?
Or, if trying to do this in Matlab, how can you limit your solutions when using solve()? I'm thinking of an equivalent to Symbolic Toolbox's assume() and assumeAlso.
I would be grateful for your help.
The numerical solution of a system of nonlinear equations is generally taken as an iterative minimization process involving the minimization (i.e., finding the global minimum) of the norm of the difference of left and right hand sides of the equations. For example fsolve essentially uses Newton iterations. Those methods perform a "deterministic" optimization: they start from an initial guess and then move in the unknowns space essentially according to the opposite of the gradient until the solution is not found.
You then have two kinds of issues:
Local minima: the stopping rule of the iteration is related to the gradient of the functional. When the gradient becomes small, the iterations are stopped. But the gradient can become small in correspondence to local minima, besides the desired global one. When the initial guess is far from the actual solution, then you are stucked in a false solution.
Ill-conditioning: large variations of the unknowns can be reflected into large variations of the data. So, small numerical errors on data (for example, machine rounding) can lead to large variations of the unknowns.
Due to the above problems, the solution found by your numerical algorithm will be likely to differ (even relevantly) from the actual one.
I recommend that you make a consistency test by choosing a starting guess, for example when using fsolve, very close to the actual solution and verify that your final result is accurate. Then you will discover that, by making the initial guess more far away from the actual solution, your result will be likely to show some (even large) errors. Of course, the entity of the errors depend on the nature of the system of equations. In some lucky cases, those errors could keep also very small.