what is "-n" in the script? - perl

saw the script (see below) but could not find more info about "-n".
my $numeric =0;
my $input = shift;
if ($input eq "-n") {
$numeric =1;
$input = shift;
}
my $output = shift;
open INPUT, $input or die $!;
open OUTPUT, ">$output" or die $!;
my #file = <INPUT>;
if ($numeric) {
#file = sort { $a <=> $b } #file;
} else {
#file = sort #file;
}
print OUTPUT #file;
The text explaining the script says the following "If the first thing we see on the command line after our program's name is the string -n, then we are doing a numeric sort."
Google search does not seem to recognize most "non-alphanumeric" symbols, so "-n" search yields nothing. The only other place I saw "-n"is in learning perl, where it says the following "the converted sed script can operate either with or without -n option". Not even sure if this is the same "-n" as in the script. Any idea where I can find out more info about the -n (although it may simply means a numeric string ?? nothing else more)

The -n used by this script is entirely unrelated to the -n flag used by perl. In other words, this:
perl -n script.pl
Is completely different from this:
perl script.pl -n
What you have is the second case. Take a look at the documentation for shift:
Shifts the first value of the array off and returns it, shortening the
array by 1 and moving everything down. If there are no elements in the
array, returns the undefined value. If ARRAY is omitted, shifts the #_
array within the lexical scope of subroutines and formats, and the
#ARGV array outside a subroutine and also within the lexical scopes
established by the eval STRING , BEGIN {} , INIT {} , CHECK {} ,
UNITCHECK {} , and END {} constructs.
That's a mouthfull, but what it's saying is that if we're not in a subroutine, and shift appears by itself, it's going to grab the first element of #ARGV. What's #ARGV? Let's look in perlvar, where all those weird variables are documented:
The array #ARGV contains the command-line arguments intended for the
script.
Note that those are the arguments for the script, not for perl. So if somebody executes your script with perl script.pl -n, then we can expect $ARGV[0] to be the string -n.
Looking at your code now, it's obvious what's going on:
my $input = shift;
if ($input eq "-n") {
$numeric =1;
$input = shift;
}
They use shift without an argument and outside a subroutine to grab the first element of #ARGV. If that's -n, the variable $numeric is set to 1. That variable controls how the script behaves. (The script then goes on to get the names of the input and output files out of #ARGV as well.)

Its a command line argument for this script itself. If the user invokes it with the name of the script followed by "-n" then that will tell the script how to behave.

Related

2 Sub references as arguments in perl

I have perl function I dont what does it do?
my what does min in perl?
#ARVG what does mean?
sub getArgs
{
my $argCnt=0;
my %argH;
for my $arg (#ARGV)
{
if ($arg =~ /^-/) # insert this entry and the next in the hash table
{
$argH{$ARGV[$argCnt]} = $ARGV[$argCnt+1];
}
$argCnt++;
}
return %argH;}
Code like that makes David sad...
Here's a reformatted version of the code doing the indentations correctly. That makes it so much easier to read. I can easily tell where my if and loops start and end:
sub getArgs {
my $argCnt = 0;
my %argH;
for my $arg ( #ARGV ) {
if ( $arg =~ /^-/ ) { # insert this entry and the next in the hash table
$argH{ $ARGV[$argCnt] } = $ARGV[$argCnt+1];
}
$argCnt++;
}
return %argH;
}
The #ARGV is what is passed to the program. It is an array of all the arguments passed. For example, I have a program foo.pl, and I call it like this:
foo.pl one two three four five
In this case, $ARGV is set to the list of values ("one", "two", "three", "four", "five"). The name comes from a similar variable found in the C programming language.
The author is attempting to parse these arguments. For example:
foo.pl -this that -the other
would result in:
$arg{"-this"} = "that";
$arg{"-the"} = "other";
I don't see min. Do you mean my?
This is a wee bit of a complex discussion which would normally involve package variables vs. lexically scoped variables, and how Perl stores variables. To make things easier, I'm going to give you a sort-of incorrect, but technically wrong answer: If you use the (strict) pragma, and you should, you have to declare your variables with my before they can be used. For example, here's a simple two line program that's wrong. Can you see the error?
$name = "Bob";
print "Hello $Name, how are you?\n";
Note that when I set $name to "Bob", $name is with a lowercase n. But, I used $Name (upper case N) in my print statement. As it stands, now. Perl will print out "Hello, how are you?" without a care that I've used the wrong variable name. If it's hard to spot an error like this in a two line program, imagine what it would be like in a 1000 line program.
By using strict and forcing me to declare variables with my, Perl can catch that error:
use strict;
use warnings; # Another Pragma that should always be used
my $name = "Bob";
print "Hello $Name, how are you doing\n";
Now, when I run the program, I get the following error:
Global symbol "$Name" requires explicit package name at (line # of print statement)
This means that $Name isn't defined, and Perl points to where that error is.
When you define variables like this, they are in scope with in the block where it's defined. A block could be the code contained in a set of curly braces or a while, if, or for statement. If you define a variable with my outside of these, it's defined to the end of the file.
Thus, by using my, the variables are only defined inside this subroutine. And, the $arg variable is only defined in the for loop.
One more thing:
The person who wrote this should have used the Getopt::Long module. There's a major bug in their code:
For example:
foo.pl -this that -one -two
In this case, my hash looks like this:
$args{'-this'} = "that";
$args{'-one'} = "-two";
$args{'-two'} = undef;
If I did this:
if ( defined $args{'-two'} ) {
...
}
I would not execute the if statement.
Also:
foo.pl -this=that -one -two
would also fail.
#ARGV is a special variable (refer to perldoc perlvar):
#ARGV
The array #ARGV contains the command-line arguments intended for the
script. $#ARGV is generally the number of arguments minus one, because
$ARGV[0] is the first argument, not the program's command name itself.
See $0 for the command name.
Perl documentation is also available from your command line:
perldoc -v #ARGV

Perl - How to create commands that users can input in console?

I'm just starting in Perl and I'm quite enjoying it. I'm writing some basic functions, but what I really want to be able to do is to use those functions intelligently using console commands. For example, say I have a function adding two numbers. I'd want to be able to type in console "add 2, 4" and read the first word, then pass the two numbers as parameters in an "add" function. Essentially, I'm asking for help in creating some basic scripting using Perl ^^'.
I have some vague ideas about how I might do this in VB, but Perl, I have no idea where I'd start, or what functions would be useful to me. Is there something like VB.net's "Split" function where you can break down the contents of a scalar into an array? Is there a simple way to analyse one word at a time in a scalar, or iterate through a scalar until you hit a separator, for example?
I hope you can help, any suggestions are appreciated! Bear in mind, I'm no expert, I started Perl all of a few weeks ago, and I've only been doing VB.net half a year.
Thank you!
Edit: If you're not sure what to suggest and you know any simple/intuitive resources that might be of help, that would also be appreciated.
Its rather easy to make a script which dispatches to a command by name. Here is a simple example:
#!/usr/bin/env perl
use strict;
use warnings;
# take the command name off the #ARGV stack
my $command_name = shift;
# get a reference to the subroutine by name
my $command = __PACKAGE__->can($command_name) || die "Unknown command: $command_name\n";
# execute the command, using the rest of #ARGV as arguments
# and print the return with a trailing newline
print $command->(#ARGV);
print "\n";
sub add {
my ($x, $y) = #_;
return $x + $y;
}
sub subtract {
my ($x, $y) = #_;
return $x - $y;
}
This script (say its named myscript.pl) can be called like
$ ./myscript.pl add 2 3
or
$ ./myscript.pl subtract 2 3
Once you have played with that for a while, you might want to take it further and use a framework for this kind of thing. There are several available, like App::Cmd or you can take the logic shown above and modularize as you see fit.
You want to parse command line arguments. A space serves as the delimiter, so just do a ./add.pl 2 3 Something like this:
$num1=$ARGV[0];
$num2=$ARGV[1];
print $num1 + $num2;
will print 5
Here is a short implementation of a simple scripting language.
Each statement is exactly one line long, and has the following structure:
Statement = [<Var> =] <Command> [<Arg> ...]
# This is a regular grammar, so we don't need a complicated parser.
Tokens are seperated by whitespace. A command may take any number of arguments. These can either be the contents of variables $var, a string "foo", or a number (int or float).
As these are Perl scalars, there is no visible difference between strings and numbers.
Here is the preamble of the script:
#!/usr/bin/perl
use strict;
use warnings;
use 5.010;
strict and warnings are essential when learning Perl, else too much weird stuff would be possible. The use 5.010 is a minimum version, it also defines the say builtin (like a print but appends a newline).
Now we declare two global variables: The %env hash (table or dict) associates variable names with their values. %functions holds our builtin functions. The values are anonymous functions.
my %env;
my %functions = (
add => sub { $_[0] + $_[1] },
mul => sub { $_[0] * $_[1] },
say => sub { say $_[0] },
bye => sub { exit 0 },
);
Now comes our read-eval-loop (we don't print by default). The readline operator <> will read from the file specified as the first command line argument, or from STDIN if no filename is provided.
while (<>) {
next if /^\s*\#/; # jump comment lines
# parse the line. We get a destination $var, a $command, and any number of #args
my ($var, $command, #args) = parse($_);
# Execute the anonymous sub specified by $command with the #args
my $value = $functions{ $command }->(#args);
# Store the return value if a destination $var was specified
$env{ $var } = $value if defined $var;
}
That was fairly trivial. Now comes some parsing code. Perl “binds” regexes to strings with the =~ operator. Regexes may look like /foo/ or m/foo/. The /x flags allows us to include whitespace in our regex that doesn't match actual whitespace. The /g flag matches globally. This also enables the \G assertion. This is where the last successful match ended. The /c flag is important for this m//gc style parsing to consume one match at a time, and to prevent the position of the regex engine in out string to being reset.
sub parse {
my ($line) = #_; # get the $line, which is a argument
my ($var, $command, #args); # declare variables to be filled
# Test if this statement has a variable declaration
if ($line =~ m/\G\s* \$(\w+) \s*=\s* /xgc) {
$var = $1; # assign first capture if successful
}
# Parse the function of this statement.
if ($line =~ m/\G\s* (\w+) \s*/xgc) {
$command = $1;
# Test if the specified function exists in our %functions
if (not exists $functions{$command}) {
die "The command $command is not known\n";
}
} else {
die "Command required\n"; # Throw fatal exception on parse error.
}
# As long as our matches haven't consumed the whole string...
while (pos($line) < length($line)) {
# Try to match variables
if ($line =~ m/\G \$(\w+) \s*/xgc) {
die "The variable $1 does not exist\n" if not exists $env{$1};
push #args, $env{$1};
}
# Try to match strings
elsif ($line =~ m/\G "([^"]+)" \s*/xgc) {
push #args, $1;
}
# Try to match ints or floats
elsif ($line =~ m/\G (\d+ (?:\.\d+)? ) \s*/xgc) {
push #args, 0+$1;
}
# Throw error if nothing matched
else {
die "Didn't understand that line\n";
}
}
# return our -- now filled -- vars.
return $var, $command, #args;
}
Perl arrays can be handled like linked list: shift removes and returns the first element (pop does the same to the last element). push adds an element to the end, unshift to the beginning.
Out little programming language can execute simple programs like:
#!my_little_language
$a = mul 2 20
$b = add 0 2
$answer = add $a $b
say $answer
bye
If (1) our perl script is saved in my_little_language, set to be executable, and is in the system PATH, and (2) the above file in our little language saved as meaning_of_life.mll, and also set to be executable, then
$ ./meaning_of_life
should be able to run it.
Output is obviously 42. Note that our language doesn't yet have string manipulation or simple assignment to variables. Also, it would be nice to be able to call functions with the return value of other functions directly. This requires some sort of parens, or precedence mechanism. Also, the language requires better error reporting for batch processing (which it already supports).

How to determine if Java process is running in Perl

I have a suite of small Java app that all compiles/packages to <name-of-the-app>.jar and run on my server. Occasionally one of them will throw an exception, choke and die. I am trying to write a quick-n-dirty Perl script that will periodically poll to see if all of these executable JARs are still running, and if any of them are not, send me an email and notify me which one is dead.
To determine this manually, I have to run a ps -aef | grep <name-of-app> for each app I want to check. For example, to see if myapp.jar is running as a process, I run ps -aef | grep myapp, and look for a grep result that describes the JVM process representing myapp.jar. This manual checking is now getting tedious and is a prime candidate for automation!
I am trying to implement the code that checks to see whether a process is running or not. I'd like to make this a sub that accepts the name of the executable JAR and returns true or false:
sub isAppStillRunning($appName) {
# Somehow run "ps -aef | grep $appName"
# Somehow count the number of processes returned by the grep
# Since grep always returns itself, determine if (count - 1) == 1.
# If so, return true, otherwise, false.
}
I need to be able to pass the sub the name of an app, run my normal command, and count the number of results returned by grep. Since running a grep always results in at least one result (the grep command itself), I need logic that says if the (# of results - 1) is equal to 1, then we know the app is running.
I'm brand new to Perl and am having a tough time figuring out how to implement this logic. Here's my best attempt so far:
sub isAppStillRunning($appName) {
# Somehow run "ps -aef | grep $appName"
#grepResults = `ps -aef | grep $appName`;
# Somehow count the number of processes returned by the grep
$grepResultCount = length(#grepResults);
# Since grep always returns itself, determine if (count - 1) == 1.
# If so, return true, otherwise, false.
if(($grepResultCount - 1) == 1)
true
else
false
}
Then to call the method, from inside the same Perl script, I think I would just run:
&isAppStillRunning("myapp");
Any help with defining the sub and then calling it with the right app name is greatly appreciated. Thanks in advance!
It would be about a billion times easier to use the Proc::ProcessTable module from CPAN. Here's an example of what it might look like:
use strict;
use warnings;
use Proc::ProcessTable;
...
sub isAppStillRunning {
my $appname = shift;
my $pt = Proc::ProcessTable->new;
my #procs = grep { $_->fname =~ /$appname/ } #{ $pt->table };
if ( #procs ) {
# we've got at least one proc matching $appname. Hooray!
} else {
# everybody panic!
}
}
isAppStillRUnning( "myapp" );
Some notes to keep in mind:
Turn on strict and warnings. They are your friends.
You don't specify subroutine arguments with prototypes. (Prototypes in Perl do something completely different, which you don't want.) Use shift to get arguments off the #_ array.
Don't use & to call subroutines; just use its name.
An array evaluated in scalar context (including if its inside an if) gives you its size. length doesn't work on arrays.
Your sub is almost there, but the final if-else construct has to be corrected, and in some cases Perl idiom can make your life easier.
Perl Has Prototypes, But They Suck
sub isAppStillRunning($appName) {
will not work. Instead use
sub isAppStillRunning {
my ($appName) = #_;
The #_ array holds the arguments to the function.
Perl has some simple prototypes (the sub name(&$#) {...} syntax), but they are broken, and an advanced topic, so don't use them.
Perl Has Built-In Grep
`ps -aef | grep $appName`;
This returns one (1) string, possibly containing multiple lines. You could split the output at newlines, and grep manually, which is safer than interpolating variables:
my #lines = split /\n/ `ps -aef`;
my #grepped = grep /$appName/, #lines;
You could also use the open function to explicitly open a pipe to ps:
my #grepped = ();
open my $ps, '-|', 'ps -aef' or die "can't invocate ps";
while (<$ps>) {
push #grepped if /$appName/;
}
This is exactly equal, but better style. It reads all lines from the ps output and then pushes all lines with your $appName into the #grepped array.
Scalar vs. List Context
Perl has this unusual thing called "context". There is list context and scalar context. For example, subroutine calls take argument lists - so these lists (usually) have list context. Concatenating two strings is a scalar context, in contrast.
Arrays behave differently depending on their context. In list context, they evaluate to their elements, but in scalar context, they evaluate to the number of their elements. So there is no need to manually count elements (or use the length function that works on strings).
So we have:
my #array = (1, 2, 3);
print "Length: ", scalar(#array), "\n"; # prints "Length: 3\n"
print "Elems: ", #array, "\n"; # prints "Elems: 123\n";
print "LastIdx: ", $#array, "\n"; # prints "LastIdx: 2\n";
The last form, $#array, is the last index in the array. Unless you meddle with special variables, this is the same as #array - 1.
The scalar function forces scalar context.
Perl Has No Booleans
Perl has no boolean data type, and therefore no true or false keywords. Instead, all values are true, unless stated otherwise. False values are:
The empty string "", the number zero 0, the string zero "0", the special value undef, and some other oddities you won't run into.
So generally use 1 as true and 0 as false.
The if/else constructs require curly braces
So you probably meant:
if (TEST) {
return 1;
} else {
return 0;
}
which is the same as return TEST, where TEST is a condition.
The Ultimate reduction
Using these tricks, your sub could be written as short as
sub isAppStillRunning {
return scalar grep /$_[0]/, (split /\n/, `ps -aef`);
}
This returns the number of lines that contain your app name.
You could modify your routine like this:
sub isAppRunning {
my $appName = shift;
#grepResults = `ps -aef | grep $appName`;
my $items = 0;
for $item(#grepResults){
$items++;
}
return $items;
}
This will iterate over the #grepResults and allow you to inspect the $item if necessary.
Calling it like this should return the number of processes:
print(isAppRunning('myapp') . "\n");

perl split on empty file

I have basically the following perl I'm working with:
open I,$coupon_file or die "Error: File $coupon_file will not Open: $! \n";
while (<I>) {
$lctr++;
chomp;
my #line = split/,/;
if (!#line) {
print E "Error: $coupon_file is empty!\n\n";
$processFile = 0; last;
}
}
I'm having trouble determining what the split/,/ function is returning if an empty file is given to it. The code block if (!#line) is never being executed. If I change that to be
if (#line)
than the code block is executed. I've read information on the perl split function over at
http://perldoc.perl.org/functions/split.html and the discussion here about testing for an empty array but not sure what is going on here.
I am new to Perl so am probably missing something straightforward here.
If the file is empty, the while loop body will not run at all.
Evaluating an array in scalar context returns the number of elements in the array.
split /,/ always returns a 1+ elements list if $_ is defined.
You might try some debugging:
...
chomp;
use Data::Dumper;
$Data::Dumper::Useqq = 1;
print Dumper( { "line is" => $_ } );
my #line = split/,/;
print Dumper( { "split into" => \#line } );
if (!#line) {
...
Below are a few tips to make your code more idiomatic:
The special variable $. already holds the current line number, so you can likely get rid of $lctr.
Are empty lines really errors, or can you ignore them?
Pull apart the list returned from split and give the pieces names.
Let Perl do the opening with the "diamond operator":
The null filehandle <> is special: it can be used to emulate the behavior of sed and awk. Input from <> comes either from standard input, or from each file listed on the command line. Here's how it works: the first time <> is evaluated, the #ARGV array is checked, and if it is empty, $ARGV[0] is set to "-", which when opened gives you standard input. The #ARGV array is then processed as a list of filenames. The loop
while (<>) {
... # code for each line
}
is equivalent to the following Perl-like pseudo code:
unshift(#ARGV, '-') unless #ARGV;
while ($ARGV = shift) {
open(ARGV, $ARGV);
while (<ARGV>) {
... # code for each line
}
}
except that it isn't so cumbersome to say, and will actually work.
Say your input is in a file named input and contains
Campbell's soup,0.50
Mac & Cheese,0.25
Then with
#! /usr/bin/perl
use warnings;
use strict;
die "Usage: $0 coupon-file\n" unless #ARGV == 1;
while (<>) {
chomp;
my($product,$discount) = split /,/;
next unless defined $product && defined $discount;
print "$product => $discount\n";
}
that we run as below on Unix:
$ ./coupons input
Campbell's soup => 0.50
Mac & Cheese => 0.25
Empty file or empty line? Regardless, try this test instead of !#line.
if (scalar(#line) == 0) {
...
}
The scalar method returns the array's length in perl.
Some clarification:
if (#line) {
}
Is the same as:
if (scalar(#line)) {
}
In a scalar context, arrays (#line) return the length of the array. So scalar(#line) forces #line to evaluate in a scalar context and returns the length of the array.
I'm not sure whether you're trying to detect if the line is empty (which your code is trying to) or whether the whole file is empty (which is what the error says).
If the line, please fix your error text and the logic should be like the other posters said (or you can put if ($line =~ /^\s*$/) as your if).
If the file, you simply need to test if (!$lctr) {} after the end of your loop - as noted in another answer, the loop will not be entered if there's no lines in the file.

How can I translate a shell script to Perl?

I have a shell script, pretty big one. Now my boss says I must rewrite it in Perl.
Is there any way to write a Perl script and use the existing shell code as is in my Perl script. Something similar to Inline::C.
Is there something like Inline::Shell? I had a look at inline module, but it supports only languages.
I'll answer seriously. I do not know of any program to translate a shell script into Perl, and I doubt any interpreter module would provide the performance benefits. So I'll give an outline of how I would go about it.
Now, you want to reuse your code as much as possible. In that case, I suggest selecting pieces of that code, write a Perl version of that, and then call the Perl script from the main script. That will enable you to do the conversion in small steps, assert that the converted part is working, and improve gradually your Perl knowledge.
As you can call outside programs from a Perl script, you can even replace some bigger logic with Perl, and call smaller shell scripts (or other commands) from Perl to do something you don't feel comfortable yet to convert. So you'll have a shell script calling a perl script calling another shell script. And, in fact, I did exactly that with my own very first Perl script.
Of course, it's important to select well what to convert. I'll explain, below, how many patterns common in shell scripts are written in Perl, so that you can identify them inside your script, and create replacements by as much cut&paste as possible.
First, both Perl scripts and Shell scripts are code+functions. Ie, anything which is not a function declaration is executed in the order it is encountered. You don't need to declare functions before use, though. That means the general layout of the script can be preserved, though the ability to keep things in memory (like a whole file, or a processed form of it) makes it possible to simplify tasks.
A Perl script, in Unix, starts with something like this:
#!/usr/bin/perl
use strict;
use warnings;
use Data::Dumper;
#other libraries
(rest of the code)
The first line, obviously, points to the commands to be used to run the script, just like normal shells do. The following two "use" lines make then language more strict, which should decrease the amount of bugs you encounter because you don't know the language well (or plain did something wrong). The third use line imports the "Dumper" function of the "Data" module. It's useful for debugging purposes. If you want to know the value of an array or hash table, just print Dumper(whatever).
Note also that comments are just like shell's, lines starting with "#".
Now, you call external programs and pipe to or pipe from them. For example:
open THIS, "cat $ARGV[0] |";
That will run cat, passing "$ARGV[0]", which would be $1 on shell -- the first argument passed to it. The result of that will be piped into your Perl script through "THIS", which you can use to read that from it, as I'll show later.
You can use "|" at the beginning or end of line, to indicate the mode "pipe to" or "pipe from", and specify a command to be run, and you can also use ">" or ">>" at the beginning, to open a file for writing with or without truncation, "<" to explicitly indicate opening a file for reading (the default), or "+<" and "+>" for read and write. Notice that the later will truncate the file first.
Another syntax for "open", which will avoid problems with files with such characters in their names, is having the opening mode as a second argument:
open THIS, "-|", "cat $ARGV[0]";
This will do the same thing. The mode "-|" stands for "pipe from" and "|-" stands for "pipe to". The rest of the modes can be used as they were (>, >>, <, +>, +<). While there is more than this to open, it should suffice for most things.
But you should avoid calling external programs as much as possible. You could open the file directly, by doing open THIS, "$ARGV[0]";, for example, and have much better performance.
So, what external programs you could cut out? Well, almost everything. But let's stay with the basics: cat, grep, cut, head, tail, uniq, wc, sort.
CAT
Well, there isn't much to be said about this one. Just remember that, if possible, read the file only once and keep it in memory. If the file is huge you won't do that, of course, but there are almost always ways to avoid reading a file more than once.
Anyway, the basic syntax for cat would be:
my $filename = "whatever";
open FILE, "$filename" or die "Could not open $filename!\n";
while(<FILE>) {
print $_;
}
close FILE;
This opens a file, and prints all it's contents ("while(<FILE>)" will loop until EOF, assigning each line to "$_"), and close it again.
If I wanted to direct the output to another file, I could do this:
my $filename = "whatever";
my $anotherfile = "another";
open (FILE, "$filename") || die "Could not open $filename!\n";
open OUT, ">", "$anotherfile" or die "Could not open $anotherfile for writing!\n";
while(<FILE>) {
print OUT $_;
}
close FILE;
This will print the line to the file indicated by "OUT". You can use STDIN, STDOUT and STDERR in the appropriate places as well, without having to open them first. In fact, "print" defaults to STDOUT, and "die" defaults to "STDERR".
Notice also the "or die ..." and "|| die ...". The operators or and || means it will only execute the following command if the first returns false (which means empty string, null reference, 0, and the like). The die command stops the script with an error message.
The main difference between "or" and "||" is priority. If "or" was replaced by "||" in the examples above, it would not work as expected, because the line would be interpreted as:
open FILE, ("$filename" || die "Could not open $filename!\n");
Which is not at all what is expected. As "or" has a lower priority, it works. In the line where "||" is used, the parameters to open are passed between parenthesis, making it possible to use "||".
Alas, there is something which is pretty much what cat does:
while(<>) {
print $_;
}
That will print all files in the command line, or anything passed through STDIN.
GREP
So, how would our "grep" script work? I'll assume "grep -E", because that's easier in Perl than simple grep. Anyway:
my $pattern = $ARGV[0];
shift #ARGV;
while(<>) {
print $_ if /$pattern/o;
}
The "o" passed to $patttern instructs Perl to compile that pattern only once, thus gaining you speed. Not the style "something if cond". It means it will only execute "something" if the condition is true. Finally, "/$pattern/", alone, is the same as "$_ =~ m/$pattern/", which means compare $_ with the regex pattern indicated. If you want standard grep behavior, ie, just substring matching, you could write:
print $_ if $_ =~ "$pattern";
CUT
Usually, you do better using regex groups to get the exact string than cut. What you would do with "sed", for instance. Anyway, here are two ways of reproducing cut:
while(<>) {
my #array = split ",";
print $array[3], "\n";
}
That will get you the fourth column of every line, using "," as separator. Note #array and $array[3]. The # sigil means "array" should be treated as an, well, array. It will receive an array composed of each column in the currently processed line. Next, the $ sigil means array[3] is a scalar value. It will return the column you are asking for.
This is not a good implementation, though, as "split" will scan the whole string. I once reduced a process from 30 minutes to 2 seconds just by not using split -- the lines where rather large, though. Anyway, the following has a superior performance if the lines are expected to be big, and the columns you want are low:
while(<>) {
my ($column) = /^(?:[^,]*,){3}([^,]*),/;
print $column, "\n";
}
This leverages regular expressions to get the desired information, and only that.
If you want positional columns, you can use:
while(<>) {
print substr($_, 5, 10), "\n";
}
Which will print 10 characters starting from the sixth (again, 0 means the first character).
HEAD
This one is pretty simple:
my $printlines = abs(shift);
my $lines = 0;
my $current;
while(<>) {
if($ARGV ne $current) {
$lines = 0;
$current = $ARGV;
}
print "$_" if $lines < $printlines;
$lines++;
}
Things to note here. I use "ne" to compare strings. Now, $ARGV will always point to the current file, being read, so I keep track of them to restart my counting once I'm reading a new file. Also note the more traditional syntax for "if", right along with the post-fixed one.
I also use a simplified syntax to get the number of lines to be printed. When you use "shift" by itself it will assume "shift #ARGV". Also, note that shift, besides modifying #ARGV, will return the element that was shifted out of it.
As with a shell, there is no distinction between a number and a string -- you just use it. Even things like "2"+"2" will work. In fact, Perl is even more lenient, cheerfully treating anything non-number as a 0, so you might want to be careful there.
This script is very inefficient, though, as it reads ALL file, not only the required lines. Let's improve it, and see a couple of important keywords in the process:
my $printlines = abs(shift);
my #files;
if(scalar(#ARGV) == 0) {
#files = ("-");
} else {
#files = #ARGV;
}
for my $file (#files) {
next unless -f $file && -r $file;
open FILE, "<", $file or next;
my $lines = 0;
while(<FILE>) {
last if $lines == $printlines;
print "$_";
$lines++;
}
close FILE;
}
The keywords "next" and "last" are very useful. First, "next" will tell Perl to go back to the loop condition, getting the next element if applicable. Here we use it to skip a file unless it is truly a file (not a directory) and readable. It will also skip if we couldn't open the file even then.
Then "last" is used to immediately jump out of a loop. We use it to stop reading the file once we have reached the required number of lines. It's true we read one line too many, but having "last" in that position shows clearly that the lines after it won't be executed.
There is also "redo", which will go back to the beginning of the loop, but without reevaluating the condition nor getting the next element.
TAIL
I'll do a little trick here.
my $skiplines = abs(shift);
my #lines;
my $current = "";
while(<>) {
if($ARGV ne $current) {
print #lines;
undef #lines;
$current = $ARGV;
}
push #lines, $_;
shift #lines if $#lines == $skiplines;
}
print #lines;
Ok, I'm combining "push", which appends a value to an array, with "shift", which takes something from the beginning of an array. If you want a stack, you can use push/pop or shift/unshift. Mix them, and you have a queue. I keep my queue with at most 10 elements with $#lines which will give me the index of the last element in the array. You could also get the number of elements in #lines with scalar(#lines).
UNIQ
Now, uniq only eliminates repeated consecutive lines, which should be easy with what you have seen so far. So I'll eliminate all of them:
my $current = "";
my %lines;
while(<>) {
if($ARGV ne $current) {
undef %lines;
$current = $ARGV;
}
print $_ unless defined($lines{$_});
$lines{$_} = "";
}
Now here I'm keeping the whole file in memory, inside %lines. The use of the % sigil indicates this is a hash table. I'm using the lines as keys, and storing nothing as value -- as I have no interest in the values. I check where the key exist with "defined($lines{$_})", which will test if the value associated with that key is defined or not; the keyword "unless" works just like "if", but with the opposite effect, so it only prints a line if the line is NOT defined.
Note, too, the syntax $lines{$_} = "" as a way to store something in a hash table. Note the use of {} for hash table, as opposed to [] for arrays.
WC
This will actually use a lot of stuff we have seen:
my $current;
my %lines;
my %words;
my %chars;
while(<>) {
$lines{"$ARGV"}++;
$chars{"$ARGV"} += length($_);
$words{"$ARGV"} += scalar(grep {$_ ne ""} split /\s/);
}
for my $file (keys %lines) {
print "$lines{$file} $words{$file} $chars{$file} $file\n";
}
Three new things. Two are the "+=" operator, which should be obvious, and the "for" expression. Basically, a "for" will assign each element of the array to the variable indicated. The "my" is there to declare the variable, though it's unneeded if declared previously. I could have an #array variable inside those parenthesis. The "keys %lines" expression will return as an array they keys (the filenames) which exist for the hash table "%lines". The rest should be obvious.
The third thing, which I actually added only revising the answer, is the "grep". The format here is:
grep { code } array
It will run "code" for each element of the array, passing the element as "$_". Then grep will return all elements for which the code evaluates to "true" (not 0, not "", etc). This avoids counting empty strings resulting from consecutive spaces.
Similar to "grep" there is "map", which I won't demonstrate here. Instead of filtering, it will return an array formed by the results of "code" for each element.
SORT
Finally, sort. This one is easy too:
my #lines;
my $current = "";
while(<>) {
if($ARGV ne $current) {
print sort #lines;
undef #lines;
$current = $ARGV;
}
push #lines, $_;
}
print sort #lines;
Here, "sort" will sort the array. Note that sort can receive a function to define the sorting criteria. For instance, if I wanted to sort numbers I could do this:
my #lines;
my $current = "";
while(<>) {
if($ARGV ne $current) {
print sort #lines;
undef #lines;
$current = $ARGV;
}
push #lines, $_;
}
print sort {$a <=> $b} #lines;
Here "$a" and "$b" receive the elements to be compared. "<=>" returns -1, 0 or 1 depending on whether the number is less than, equal to or greater than the other. For strings, "cmp" does the same thing.
HANDLING FILES, DIRECTORIES & OTHER STUFF
As for the rest, basic mathematical expressions should be easy to understand. You can test certain conditions about files this way:
for my $file (#ARGV) {
print "$file is a file\n" if -f "$file";
print "$file is a directory\n" if -d "$file";
print "I can read $file\n" if -r "$file";
print "I can write to $file\n" if -w "$file";
}
I'm not trying to be exaustive here, there are many other such tests. I can also do "glob" patterns, like shell's "*" and "?", like this:
for my $file (glob("*")) {
print $file;
print "*" if -x "$file" && ! -d "$file";
print "/" if -d "$file";
print "\t";
}
If you combined that with "chdir", you can emulate "find" as well:
sub list_dir($$) {
my ($dir, $prefix) = #_;
my $newprefix = $prefix;
if ($prefix eq "") {
$newprefix = $dir;
} else {
$newprefix .= "/$dir";
}
chdir $dir;
for my $file (glob("*")) {
print "$prefix/" if $prefix ne "";
print "$dir/$file\n";
list_dir($file, $newprefix) if -d "$file";
}
chdir "..";
}
list_dir(".", "");
Here we see, finally, a function. A function is declared with the syntax:
sub name (params) { code }
Strictly speakings, "(params)" is optional. The declared parameter I used, "($$)", means I'm receiving two scalar parameters. I could have "#" or "%" in there as well. The array "#_" has all the parameters passed. The line "my ($dir, $prefix) = #_" is just a simple way of assigning the first two elements of that array to the variables $dir and $prefix.
This function does not return anything (it's a procedure, really), but you can have functions which return values just by adding "return something;" to it, and have it return "something".
The rest of it should be pretty obvious.
MIXING EVERYTHING
Now I'll present a more involved example. I'll show some bad code to explain what's wrong with it, and then show better code.
For this first example, I have two files, the names.txt file, which names and phone numbers, the systems.txt, with systems and the name of the responsible for them. Here they are:
names.txt
John Doe, (555) 1234-4321
Jane Doe, (555) 5555-5555
The Boss, (666) 5555-5555
systems.txt
Sales, Jane Doe
Inventory, John Doe
Payment, That Guy
I want, then, to print the first file, with the system appended to the name of the person, if that person is responsible for that system. The first version might look like this:
#!/usr/bin/perl
use strict;
use warnings;
open FILE, "names.txt";
while(<FILE>) {
my ($name) = /^([^,]*),/;
my $system = get_system($name);
print $_ . ", $system\n";
}
close FILE;
sub get_system($) {
my ($name) = #_;
my $system = "";
open FILE, "systems.txt";
while(<FILE>) {
next unless /$name/o;
($system) = /([^,]*)/;
}
close FILE;
return $system;
}
This code won't work, though. Perl will complain that the function was used too early for the prototype to be checked, but that's just a warning. It will give an error on line 8 (the first while loop), complaining about a readline on a closed filehandle. What happened here is that "FILE" is global, so the function get_system is changing it. Let's rewrite it, fixing both things:
#!/usr/bin/perl
use strict;
use warnings;
sub get_system($) {
my ($name) = #_;
my $system = "";
open my $filehandle, "systems.txt";
while(<$filehandle>) {
next unless /$name/o;
($system) = /([^,]*)/;
}
close $filehandle;
return $system;
}
open FILE, "names.txt";
while(<FILE>) {
my ($name) = /^([^,]*),/;
my $system = get_system($name);
print $_ . ", $system\n";
}
close FILE;
This won't give any error or warnings, nor will it work. It returns just the sysems, but not the names and phone numbers! What happened? Well, what happened is that we are making a reference to "$_" after calling get_system, but, by reading the file, get_system is overwriting the value of $_!
To avoid that, we'll make $_ local inside get_system. This will give it a local scope, and the original value will then be restored once returned from get_system:
#!/usr/bin/perl
use strict;
use warnings;
sub get_system($) {
my ($name) = #_;
my $system = "";
local $_;
open my $filehandle, "systems.txt";
while(<$filehandle>) {
next unless /$name/o;
($system) = /([^,]*)/;
}
close $filehandle;
return $system;
}
open FILE, "names.txt";
while(<FILE>) {
my ($name) = /^([^,]*),/;
my $system = get_system($name);
print $_ . ", $system\n";
}
close FILE;
And that still doesn't work! It prints a newline between the name and the system. Well, Perl reads the line including any newline it might have. There is a neat command which will remove newlines from strings, "chomp", which we'll use to fix this problem. And since not every name has a system, we might, as well, avoid printing the comma when that happens:
#!/usr/bin/perl
use strict;
use warnings;
sub get_system($) {
my ($name) = #_;
my $system = "";
local $_;
open my $filehandle, "systems.txt";
while(<$filehandle>) {
next unless /$name/o;
($system) = /([^,]*)/;
}
close $filehandle;
return $system;
}
open FILE, "names.txt";
while(<FILE>) {
my ($name) = /^([^,]*),/;
my $system = get_system($name);
chomp;
print $_;
print ", $system" if $system ne "";
print "\n";
}
close FILE;
That works, but it also happens to be horribly inefficient. We read the whole systems file for every line in the names file. To avoid that, we'll read all data from systems once, and then use that to process names.
Now, sometimes a file is so big you can't read it into memory. When that happens, you should try to read into memory any other file needed to process it, so that you can do everything in a single pass for each file. Anyway, here is the first optimized version of it:
#!/usr/bin/perl
use strict;
use warnings;
our %systems;
open SYSTEMS, "systems.txt";
while(<SYSTEMS>) {
my ($system, $name) = /([^,]*),(.*)/;
$systems{$name} = $system;
}
close SYSTEMS;
open NAMES, "names.txt";
while(<NAMES>) {
my ($name) = /^([^,]*),/;
chomp;
print $_;
print ", $systems{$name}" if defined $systems{$name};
print "\n";
}
close NAMES;
Unfortunately, it doesn't work. No system ever appears! What has happened? Well, let's look into what "%systems" contains, by using Data::Dumper:
#!/usr/bin/perl
use strict;
use warnings;
use Data::Dumper;
our %systems;
open SYSTEMS, "systems.txt";
while(<SYSTEMS>) {
my ($system, $name) = /([^,]*),(.*)/;
$systems{$name} = $system;
}
close SYSTEMS;
print Dumper(%systems);
open NAMES, "names.txt";
while(<NAMES>) {
my ($name) = /^([^,]*),/;
chomp;
print $_;
print ", $systems{$name}" if defined $systems{$name};
print "\n";
}
close NAMES;
The output will be something like this:
$VAR1 = ' Jane Doe';
$VAR2 = 'Sales';
$VAR3 = ' That Guy';
$VAR4 = 'Payment';
$VAR5 = ' John Doe';
$VAR6 = 'Inventory';
John Doe, (555) 1234-4321
Jane Doe, (555) 5555-5555
The Boss, (666) 5555-5555
Those $VAR1/$VAR2/etc is how Dumper displays a hash table. The odd numbers are the keys, and the succeeding even numbers are the values. Now we can see that each name in %systems has a preceeding space! Silly regex mistake, let's fix it:
#!/usr/bin/perl
use strict;
use warnings;
our %systems;
open SYSTEMS, "systems.txt";
while(<SYSTEMS>) {
my ($system, $name) = /^\s*([^,]*?)\s*,\s*(.*?)\s*$/;
$systems{$name} = $system;
}
close SYSTEMS;
open NAMES, "names.txt";
while(<NAMES>) {
my ($name) = /^\s*([^,]*?)\s*,/;
chomp;
print $_;
print ", $systems{$name}" if defined $systems{$name};
print "\n";
}
close NAMES;
So, here, we are aggressively removing any spaces from the beginning or end of name and system. There are other ways to form that regex, but that's beside the point. There is still one problem with this script, which you'll have seen if your "names.txt" and/or "systems.txt" files have an empty line at the end. The warnings look like this:
Use of uninitialized value in hash element at ./exemplo3e.pl line 10, <SYSTEMS> line 4.
Use of uninitialized value in hash element at ./exemplo3e.pl line 10, <SYSTEMS> line 4.
John Doe, (555) 1234-4321, Inventory
Jane Doe, (555) 5555-5555, Sales
The Boss, (666) 5555-5555
Use of uninitialized value in hash element at ./exemplo3e.pl line 19, <NAMES> line 4.
What happened here is that nothing went into the "$name" variable when the empty line was processed. There are many ways around that, but I choose the following:
#!/usr/bin/perl
use strict;
use warnings;
our %systems;
open SYSTEMS, "systems.txt" or die "Could not open systems.txt!";
while(<SYSTEMS>) {
my ($system, $name) = /^\s*([^,]+?)\s*,\s*(.+?)\s*$/;
$systems{$name} = $system if defined $name;
}
close SYSTEMS;
open NAMES, "names.txt" or die "Could not open names.txt!";
while(<NAMES>) {
my ($name) = /^\s*([^,]+?)\s*,/;
chomp;
print $_;
print ", $systems{$name}" if defined($name) && defined($systems{$name});
print "\n";
}
close NAMES;
The regular expressions now require at least one character for name and system, and we test to see if "$name" is defined before we use it.
CONCLUSION
Well, then, these are the basic tools to translate a shell script. You can do MUCH more with Perl, but that was not your question, and it wouldn't fit here anyway.
Just as a basic overview of some important topics,
A Perl script that might be attacked by hackers need to be run with the -T option, so that Perl will complain about any vulnerable input which has not been properly handled.
There are libraries, called modules, for database accesses, XML&cia handling, Telnet, HTTP & other protocols. In fact, there are miriads of modules which can be found at CPAN.
As mentioned by someone else, if you make use of AWK or SED, you can translate those into Perl with A2P and S2P.
Perl can be written in an Object Oriented way.
There are multiple versions of Perl. As of this writing, the stable one is 5.8.8 and there is a 5.10.0 available. There is also a Perl 6 in development, but experience has taught everyone not to wait too eagerly for it.
There is a free, good, hands-on, hard & fast book about Perl called Learning Perl The Hard Way. It's style is similar to this very answer. It might be a good place to go from here.
I hope this helped.
DISCLAIMER
I'm NOT trying to teach Perl, and you will need to have at least some reference material. There are guidelines to good Perl habits, such as using "use strict;" and "use warnings;" at the beginning of the script, to make it less lenient of badly written code, or using STDOUT and STDERR on the print lines, to indicate the correct output pipe.
This is stuff I agree with, but I decided it would detract from the basic goal of showing patterns for common shell script utilities.
I don't know what's in your shell script, but don't forget there are tools like
a2p - awk-to-perl
s2p - sed-to-perl
and perhaps more. Worth taking a look around.
You may find that due to Perl's power/features, it's not such a big job, in that you may have been jumping through hoops with various bash features and utility programs to do something that comes out of Perl natively.
Like any migration project, it's useful to have some canned regression tests to run with both solutions, so if you don't have those, I'd generate those first.
I'm surprised no-one has yet mentioned the Shell module that is included with core Perl, which lets you execute external commands using function-call syntax. For example (adapted from the synopsis):
use Shell qw(cat ps cp);
$passwd = cat '</etc/passwd';
#pslines = ps '-ww';
cp "/etc/passwd", "/tmp/passwd";
Provided you use parens, you can even call other programs in the $PATH that you didn't mention on the use line, e.g.:
gcc('-o', 'foo', 'foo.c');
Note that Shell gathers up the subprocess's STDOUT and returns it as a string or array. This simplifies scripting, but it is not the most efficient way to go and may cause trouble if you rely on a command's output being unbuffered.
The module docs mention some shortcomings, such as that shell internal commands (e.g. cd) cannot be called using the same syntax. In fact they recommend that the module not be used for production systems! But it could certainly be a helpful crutch to lean on until you get your code ported across to "proper" Perl.
The inline shell thingy is called system. If you have user-defined functions you're trying to expose to Perl, you're out of luck. However, you can run short bits of shell using the same environment as your running Perl program. You can also gradually replace parts of the shell script with Perl. Start writing a module that replicates the shell script functionality and insert Perly bits into the shell script until you eventually have mostly Perl.
There's no shell-to-Perl translator. There was a long running joke about a csh-to-Perl translator that you could email your script to, but that was really just Tom Christainsen translating it for you to show you how cool Perl was back in the early 90s. Randal Schwartz uploaded a sh-to-Perl translator, but you have to check the upload date: it was April Fool's day. His script merely wrapped everything in system.
Whatever you do, don't lose the original shell script. :)
I agree that learning Perl and trying to write Perl instead of shell is for the greater good. I did the transfer once with the help of the "Replace" function of Notepad++.
However, I had a similar problem to the one initially asked while I was trying to create a Perl wrapper around a shell script (that could execute it).
I came with the following code that works in my case.
It might help.
#!perl
use strict;
use Data::Dumper;
use Cwd;
#Variables read from shell
our %VAR;
open SH, "<$ARGV[0]" or die "Error while trying to read $ARGV[0] ($!)\n";
my #SH=<SH>;
close SH;
sh2perl(#SH);
#Subroutine to execute shell from Perl (read from array)
sub sh2perl {
#Variables
my %case; #To store data from conditional block of "case"
my %if; #To store data from conditional block of "if"
foreach my $line (#_) {
#Remove blanks at the beginning and EOL character
$line=~s/^\s*//;
chomp $line;
#Comments and blank lines
if ($line=~/^(#.*|\s*)$/) {
#Do nothing
}
#Conditional block - Case
elsif ($line=~/case.*in/..$line=~/esac/) {
if ($line=~/case\s*(.*?)\s*\in/) {
$case{'var'}=transform($1);
} elsif ($line=~/esac/) {
delete $case{'curr_pattern'};
#Run conditional block
my $case;
map { $case=$_ if $case{'var'}=~/$_/ } #{$case{'list_patterns'}};
$case ? sh2perl(#{$case{'patterns'}->{$case}}) : sh2perl(#{$case{'patterns'}->{"*"}});
} elsif ($line=~/^\s*(.*?)\s*\)/) {
$case{'curr_pattern'}=$1;
push(#{$case{'list_patterns'}}, $case{'curr_pattern'}) unless ($line=~m%\*\)%)
} else {
push(#{$case{'patterns'}->{ $case{'curr_pattern'} }}, $line);
}
}
#Conditional block - if
elsif ($line=~/^if/..$line=~/^fi/) {
if ($line=~/if\s*\[\s*(.*\S)\s*\];/) {
$if{'condition'}=transform($1);
$if{'curr_cond'}="TRUE";
} elsif ($line=~/fi/) {
delete $if{'curr_cond'};
#Run conditional block
$if{'condition'} ? sh2perl(#{$if{'TRUE'}}) : sh2perl(#{$if{'FALSE'}});
} elsif ($line=~/^else/) {
$if{'curr_cond'}="FALSE";
} else {
push(#{$if{ $if{'curr_cond'} }}, $line);
}
}
#echo
elsif($line=~/^echo\s+"?(.*?[^"])"?\s*$/) {
my $str=$1;
#echo with redirection
if ($str=~m%[>\|]%) {
eval { system(transform($line)) };
if ($#) { warn "Error while evaluating $line: $#\n"; }
#print new line
} elsif ($line=~/^echo ""$/) {
print "\n";
#default
} else {
print transform($str),"\n";
}
}
#cd
elsif($line=~/^\s*cd\s+(.*)/) {
chdir $1;
}
#export
elsif($line=~/^export\s+((\w+).*)/) {
my ($var,$exported)=($2,$1);
if ($exported=~/^(\w+)\s*=\s*(.*)/) {
while($exported=~/(\w+)\s*=\s*"?(.*?\S)"?\s*(;(?:\s*export\s+)?|$)/g) { $VAR{$1}=transform($2); }
}
# export($var,$VAR{$var});
$ENV{$var}=$VAR{$var};
print "Exported variable $var = $VAR{$var}\n";
}
#Variable assignment
elsif ($line=~/^(\w+)\s*=\s*(.*)$/) {
$1 eq "" or $VAR{$1}=""; #Empty variable
while($line=~/(\w+)\s*=\s*"?(.*?\S)"?\s*(;|$)/g) {
$VAR{$1}=transform($2);
}
}
#Source
elsif ($line=~/^source\s*(.*\.sh)/) {
open SOURCE, "<$1" or die "Error while trying to open $1 ($!)\n";
my #SOURCE=<SOURCE>;
close SOURCE;
sh2perl(#SOURCE);
}
#Default (assuming running command)
else {
eval { map { system(transform($_)) } split(";",$line); };
if ($#) { warn "Error while doing system on \"$line\": $#\n"; }
}
}
}
sub transform {
my $src=$_[0];
#Variables $1 and similar
$src=~s/\$(\d+)/$ARGV[$1-1]/ge;
#Commands stored in variables "$(<cmd>)"
eval {
while ($src=~m%\$\((.*)\)%g) {
my ($cmd,$new_cmd)=($1,$1);
my $curr_dir=getcwd;
$new_cmd=~s/pwd/echo $curr_dir/g;
$src=~s%\$\($cmd\)%`$new_cmd`%e;
chomp $src;
}
};
if ($#) { warn "Wrong assessment for variable $_[0]:\n=> $#\n"; return "ERROR"; }
#Other variables
$src=~s/\$(\w+)/$VAR{$1}/g;
#Backsticks
$src=~s/`(.*)`/`$1`/e;
#Conditions
$src=~s/"(.*?)"\s*==\s*"(.*?)"/"$1" eq "$2" ? 1 : 0/e;
$src=~s/"(.*?)"\s*!=\s*"(.*?)"/"$1" ne "$2" ? 1 : 0/e;
$src=~s/(\S+)\s*==\s*(\S+)/$1 == $2 ? 1 : 0/e;
$src=~s/(\S+)\s*!=\s*(\S+)/$1 != $2 ? 1 : 0/e;
#Return Result
return $src;
}
You could start your "Perl" script with:
#!/bin/bash
Then, assuming bash was installed at that location, perl would automatically invoke the bash interpretor to run it.
Edit: Or maybe the OS would intercept the call and stop it getting to Perl. I'm finding it hard to track down the documentation on how this actually works. Comments to documentation would be welcomed.