Why sprank(A) and A\b report different rank in matlab? - matlab

I have a point set P and I construct it's adjacent matrix A by k-nearest neighbor. Each row of A is [...+1...-1...], indicates a pair of neighbor points. The size of A is 48348 x 8058, sprank(A) is 8058. But when I do the following, it gives me a warning: "Warning: Rank deficient, rank = 8055, tol = 8.307912e-10."
a=A*b;
c=A\a;
and norm(c-b) is quite large. It seems something is wrong with the adjacent matrix A, but I can't figure it out. Thanks in advance!

sprank only tells you how many rows/columns of your matrix have non-zero elements, while A\b is reporting the actual rank of the matrix which indicates how many rows of your matrix are linearly independent. For example, for following matrix:
A = [-1 1 0 0;
0 1 -1 0;
1 0 -1 0;
0 0 1 -1]
sprank(A) is 4 but rank(A) is only 3 because you can write the third row as a linear combination of the other rows, specifically A(2,:) - A(1,:).
The issue that you need to address is either in how you're computing A (if you expect that to generate a system of linearly independent equations) or you need to find a way to use A that doesn't require factorizing a rank deficient matrix.

Related

How to create an adjacency/joint probability matrix in matlab

From a binary matrix, I want to calculate a kind of adjacency/joint probability density matrix (not quite sure how to label it as so please feel free to rename).
For example, I start with this matrix:
A = [1 1 0 1 1
1 0 0 1 1
0 0 0 1 0]
I want to produce this output:
Output = [1 4/5 1/5
4/5 1 1/5
1/5 1/5 1]
Basically, for each row, I want to calculate the proportion of times where they agreed (1 and 1 or 0 and 0). A will always agree with itself and thus have it as 1 along the diagonal. No matter how many different js are added it will still result in a 3x3, but an extra i variable will result in a 4x4.
I like to think of the inputs along i in the A matrix as the person and Js as the question and so the final output is a 3x3 (number of persons) matrix.
I am having some trouble with this on matlab. If you could please help point me in the right direction that would be fabulous.
So, you can do this in two parts.
bothOnes = A*A';
gives you a matrix showing how many 1s each pair of rows share, and
bothZeros = (1-A)*(1-A)';
gives you a matrix showing how many 0s each pair of rows share.
If you just add them up, you get how many elements they share of either type:
bothSame = A*A' + (1-A)*(1-A)';
Then just divide by the row length to get the desired fractional representation:
output = (A*A' + (1-A)*(1-A)') / size(A, 2);
That should get you there.
Note that this only works if A contains only 1's and 0's, but it can be adapted for other cases.
Here are some alternatives, assuming A can only contain 0 and 1:
If you have the Statistics Toolbox:
result = 1-squareform(pdist(A, 'hamming'));
Manual approach with implicit expansion:
result = mean(permute(A, [1 3 2])==permute(A, [3 1 2]), 3);
Using bitwise operations. This is a more esoteric approach, and is only valid if A has at most 53 columns, due to floating-point limitations:
t = bin2dec(char(A+'0')); % convert each row from binary to decimal
u = bitxor(t, t.'); % bitwise xor
v = mean(dec2bin(u)-'0', 2); % compute desired values
result = 1 - reshape(v, size(A,1), []); % reshape to obtain result

Finding equal rows in Matlab

I have a matrix suppX in Matlab with size GxN and a matrix A with size MxN. I would like your help to construct a matrix Xresponse with size GxM with Xresponse(g,m)=1 if the row A(m,:) is equal to the row suppX(g,:) and zero otherwise.
Let me explain better with an example.
suppX=[1 2 3 4;
5 6 7 8;
9 10 11 12]; %GxN
A=[1 2 3 4;
1 2 3 4;
9 10 11 12;
1 2 3 4]; %MxN
Xresponse=[1 1 0 1;
0 0 0 0;
0 0 1 0]; %GxM
I have written a code that does what I want.
Xresponsemy=zeros(size(suppX,1), size(A,1));
for x=1:size(suppX,1)
Xresponsemy(x,:)=ismember(A, suppX(x,:), 'rows').';
end
My code uses a loop. I would like to avoid this because in my real case this piece of code is part of another big loop. Do you have suggestions without looping?
One way to do this would be to treat each matrix as vectors in N dimensional space and you can find the L2 norm (or the Euclidean distance) of each vector. After, check if the distance is 0. If it is, then you have a match. Specifically, you can create a matrix such that element (i,j) in this matrix calculates the distance between row i in one matrix to row j in the other matrix.
You can treat your problem by modifying the distance matrix that results from this problem such that 1 means the two vectors completely similar and 0 otherwise.
This post should be of interest: Efficiently compute pairwise squared Euclidean distance in Matlab.
I would specifically look at the answer by Shai Bagon that uses matrix multiplication and broadcasting. You would then modify it so that you find distances that would be equal to 0:
nA = sum(A.^2, 2); % norm of A's elements
nB = sum(suppX.^2, 2); % norm of B's elements
Xresponse = bsxfun(#plus, nB, nA.') - 2 * suppX * A.';
Xresponse = Xresponse == 0;
We get:
Xresponse =
3×4 logical array
1 1 0 1
0 0 0 0
0 0 1 0
Note on floating-point efficiency
Because you are using ismember in your implementation, it's implicit to me that you expect all values to be integer. In this case, you can very much compare directly with the zero distance without loss of accuracy. If you intend to move to floating-point, you should always compare with some small threshold instead of 0, like Xresponse = Xresponse <= 1e-10; or something to that effect. I don't believe that is needed for your scenario.
Here's an alternative to #rayryeng's answer: reduce each row of the two matrices to a unique identifier using the third output of unique with the 'rows' input flag, and then compare the identifiers with singleton expansion (broadcast) using bsxfun:
[~, ~, w] = unique([A; suppX], 'rows');
Xresponse = bsxfun(#eq, w(1:size(A,1)).', w(size(A,1)+1:end));

Matlab matrix with fixed sum over rows

I'm trying to construct a matrix in Matlab where the sum over the rows is constant, but every combination is taken into account.
For example, take a NxM matrix where M is a fixed number and N will depend on K, the result to which all rows must sum.
For example, say K = 3 and M = 3, this will then give the matrix:
[1,1,1
2,1,0
2,0,1
1,2,0
1,0,2
0,2,1
0,1,2
3,0,0
0,3,0
0,0,3]
At the moment I do this by first creating the matrix of all possible combinations, without regard for the sum (for example this also contains [2,2,1] and [3,3,3]) and then throw away the element for which the sum is unequal to K
However this is very memory inefficient (especially for larger K and M), but I couldn't think of a nice way to construct this matrix without first constructing the total matrix.
Is this possible in a nice way? Or should I use a whole bunch of for-loops?
Here is a very simple version using dynamic programming. The basic idea of dynamic programming is to build up a data structure (here S) which holds the intermediate results for smaller instances of the same problem.
M=3;
K=3;
%S(k+1,m) will hold the intermediate result for k and m
S=cell(K+1,M);
%Initialisation, for M=1 there is only a trivial solution using one number.
S(:,1)=num2cell(0:K);
for iM=2:M
for temporary_k=0:K
for new_element=0:temporary_k
h=S{temporary_k-new_element+1,iM-1};
h(:,end+1)=new_element;
S{temporary_k+1,iM}=[S{temporary_k+1,iM};h];
end
end
end
final_result=S{K+1,M}
This may be more efficient than your original approach, although it still generates (and then discards) more rows than needed.
Let M denote the number of columns, and S the desired sum. The problem can be interpreted as partitioning an interval of length S into M subintervals with non-negative integer lengths.
The idea is to generate not the subinterval lengths, but the subinterval edges; and from those compute the subinterval lengths. This can be done in the following steps:
The subinterval edges are M-1 integer values (not necessarily different) between 0 and S. These can be generated as a Cartesian product using for example this answer.
Sort the interval edges, and remove duplicate sets of edges. This is why the algorithm is not totally efficient: it produces duplicates. But hopefully the number of discarded tentative solutions will be less than in your original approach, because this does take into account the fixed sum.
Compute subinterval lengths from their edges. Each length is the difference between two consecutive edges, including a fixed initial edge at 0 and a final edge at S.
Code:
%// Data
S = 3; %// desired sum
M = 3; %// number of pieces
%// Step 1 (adapted from linked answer):
combs = cell(1,M-1);
[combs{end:-1:1}] = ndgrid(0:S);
combs = cat(M+1, combs{:});
combs = reshape(combs,[],M-1);
%// Step 2
combs = unique(sort(combs,2), 'rows');
%// Step 3
combs = [zeros(size(combs,1),1) combs repmat(S, size(combs,1),1)]
result = diff(combs,[],2);
The result is sorted in lexicographical order. In your example,
result =
0 0 3
0 1 2
0 2 1
0 3 0
1 0 2
1 1 1
1 2 0
2 0 1
2 1 0
3 0 0

For large sparse matrices in MATLAB, compute the cumulative sum across the columns for non-zero entries?

In MATLAB have a large matrix with transition probabilities transition_probs, and an adjacency matrix adj_mat. I want to compute the cumulative sum of the transition matrix along the columns and then element wise multiply it against the adjacency matrix which acts as a mask in this way:
cumsumTransitionMat = cumsum(transition_probs,2) .* adj_mat;
I get a MEMORY error because with the cumsum all the entries of the matrix are then non-zero.
I would like to avoid this problem by only having the cumulative sum entries where there are non zero entries in the first place. How can this be done without the use of a for loop?
when CUMSUM is applied on rows, for each row it will go and fill with values starting with the first nonzero column it finds up until the last column, thats what it does by definition.
The worst case in terms of storage is when the sparse matrix contains values at the first column, the best case is when all nonzero values occur at the last column. Example:
% worst case
>> M = sparse([ones(5,1) zeros(5,4)]);
>> MM = cumsum(M,2); % completely dense matrix
>> nnz(MM)
ans =
25
% best case
>> MM = cumsum(fliplr(M),2);
If the resulting matrix does not fit in memory, I dont see what else you can do, except maybe use a for-loop over the rows, and process the matrix is smaller batches...
Note that you cannot apply the masking operation before computing the cumulative sum, since this will alter the results. So you cant say cumsum(transition_probs .* adj_mat, 2).
You can apply cumsum on the non-zero elements only. Here is some code:
A = sparse(round(rand(100,1))); %some sparse data
A_cum = A; %instantiate A_cum by copy A
idx_A = find(A); %find non-zeros
A_cum(idx_A) = cumsum(A(idx_A)); %cumsum on non-zeros elements only
You can check the output with
B = cumsum(A);
A_cum B
1 1
0 1
0 1
2 2
3 3
4 4
5 5
0 5
0 5
6 6
and isequal(A_cum(find(A_cum)), B(find(A_cum))) gives 1.

Counting the number of elements in matlab

I am new to MATLAB. Suppose I have a vector like x = [1 1 1 1 1 1 0 0 1 0]. I want to calculate the total number of elements in the vector and the number of non zero elements in the vector. Then come up with a ratio of both the numbers. I am searching in MATLAB help. how to do count of elements, but till now I didn't get any luck. If anyone provide me with help, it would be of great help. Thanks in advance.
You can get the number of elements with numel(x).
You can get the number of non-zeros with sum(x ~= 0).
So the ratio is one divided by the other.
The right way to find the number of nonzero elements (in general) is to use the nnz() function; using sum() also works in this particular case but will fail if there are numbers other than zero and one in the matrix used. Therefore to calculate the total element count, nonzero element count, and ratio, use code like this:
x = [1 1 1 1 1 1 0 0 1 0];
nonzeroes = nnz(x);
total = numel(x);
ratio = nonzeroes / total;
The ratio of non-zero elements to all elements in a vector is:
r = length(find(x)) / length(x)
What length does is kind of obvious. find gives you the index of all non-zero elements.
Edit: Fixed mistake of using size instead of length.
a= numel(find(x))/numel(x) is another way to do it.