Monte Carlo simulation with condition loop in MATLAB - matlab

I am a physicist.
I have written a code on Monte Carlo simulation with condition loop.
I am getting some error in running this simulation code. I want to consider the positive value of the simulation result. When I run the code, I get an error.
I am running 10000 iterations and I have five parameters such as A,B,C,D and E. I am generating a random number for each parameter by using variance and mean of every parameter with the help of normal distribution.
The code is as follows:
n = 10000;
Constant = 5;
Arand = (3*10^(12)*randn(1,n)) + 7*10^(6)*ones(1,n);
Brand = (9*randn(1,n)) + 17*ones(1,n);
Crand = (2*10^(-4)*randn(1,n)) + 0.2*ones(1,n);
Drand = (0.0017*randn(1,n)) + 0.50*ones(1,n);
Erand = (0.00004*randn(1,n)) + 1.5*ones(1,n);
if P1 > 0
P1 = Constant*Arand.*Brand.*Crand.*Drand.*(1/Erand)
end
plot(P1);

P1 = Constant*Arand.*Brand.*Crand.*Drand./Erand;
It's not clear what is P1 before the if statement.
Note, that "if P1 > 0" means "if all(P1 > 0)".

If you want to plot only those points where P1 is positive you need to change these lines:
if P1 > 0
P1 = Constant*Arand.*Brand.*Crand.*Drand.*(1/Erand)
end
plot(P1);
to the following:
Define P1:
P1 = Constant*Arand.*Brand.*Crand.*Drand./Erand;
and then choose to plot only the positive values:
plot(P1(P1>0));
Hope this helps.

Related

How do I implement Neumann series iteration to approximate Ax = b?

I am working on MatLab problems from my textbook and one of the problems (as an example of Neumann series iteration) asks me to follow the pseudocode below:
INPUT: A n x n matrix, b n x 1 vector, T a positive integer
OUTPUT: An approximation y of x after T iterations
STEP 1: Set y = zeros(n,1)
STEP 2: Set M = eye(n) - A
STEP 2: For i = 1,2,...,T do STEP 3
STEP 3: Set y = M*y + b
STEP 4: OUTPUT(y)
I am trying to find the smallest value of T such that the largest entry of the vector Ay - b in absolute value is less than the tolerance I set (the variable e as shown below). I then save T and E (the largest entry in absolute value of Ay - b).
function [T,E] = neumann(A,b,e)
n = size(A);
y = zeros(n(1,1),1);
M = eye(n(1,1)) - A;
t = 10000;
for ii = 1:t
y = M*y + b;
if max(abs(A*y - b)) < e
T = t;
E = max(abs(A*y - b));
break
end
end
end
A = [1.1,.2,-.2,.5;
.2,.9,.5,.3;
.1,0.,1.,.4;
.1,.1,.1,1.2];
b = [1;0;1;0];
[T_2, E_2] = neumann(A,b,1e-2);
[T_4, E_4] = neumann(A,b,1e-4);
[T_6, E_6] = neumann(A,b,1e-6);
output = [T_2, E_2; T_4, E_4; T_6, E_6];
Instead of getting the smallest possible T, the for loop goes through all of the iterations even though I used the break statement to end the loop's execution once the condition was met. I can't really figure out what's wrong with my loop. I followed the pseudocode as closely as possible. Any feedback or suggestions is appreciated, thank you in advance.
You always set T = t, you've perhaps forgotten what t is.
You define t = 10000 on line 5 of the neumann function, this doesn't change so your output T is always 10000.
Instead, I assume you wanted T = ii;, as ii is the current time step when the threshold is reached.

Solve for simultaneous second order ODE for bioreactor with different stages using MATLAB

I am trying to solve simultaneous second order differential equations to find the concentration of a tracer (molecule) at different stages of a bioreactor. The stages are arranged in series.
Context: Bioreactor that we are working with, is a Rotating Biological Contractor. Here is an example. The tracer molecule is injected at the first stage at time t=0 and our objective is to find how the concentration of the tracer molecule varies with respect to time in each stage.
The second order ODE that we are working with can be found here: https://imgur.com/a/KS4Od
I tried to simplify the equation for 4 stages (2nd and 3rd pic in imgur album) and have tried to solve it using MATLAB. Here is the code for it:
P2 = 1; P3 = 5; C0 = 30; P4 = 2;
f = #(t,x)[x(2); (C0+P4*x(7)-x(1)-P3*x(2))/P2;
x(4); (x(1)-x(3)-P3*x(4))/P2;
x(6); (x(3)-x(5)-P3*x(6))/P2;
x(8); (x(5)-x(7)-P3*x(8))/P2];
t= linspace(0,40); init = [0 0 0 0 0 0 0 0];
[t Y] = ode45(f,t,init);
plot(t,Y(:,1),'r-',t,Y(:,3),'b-',t,Y(:,5),'k-',t,Y(:,7),'m-')
legend('C1','C2','C3','C4')
Our aim is to know how the concentration varies in the 4th stage. It is supposed to look like this Residence time distribution or something similar.
I need to know whether its possible to use "for loop" for "n" stages in series and solve the equation. Ideally, only inputs should be no. of stages, time interval, initial concentration and constants. Assume whatever values for constants, initial conc. and time interval.
Could someone please guide me through solving this? I would really appreciate your help.
Instead of the anonymous/lambda definition of f, use a more traditional function which allows you to employ loops.
n = 4
function dotx = f(t,x)
dotx = zeros(2*n,1)
dotx(1) = x(2);
dotx(2) = (C0+P4*x(7)-x(1)-P3*x(2))/P2
for k = 2:n
dotx(2*k-1) = x(2*k)
dotx(2*k) = (x(2*k-3)-x(2*k-1)-P3*x(2*k))/P2
end
end
init = zeros(2*n,1)
One may have to change row/column format for x, dotx.

Speeding up symbolic recursion in Matlab

I have a backwards recursion for a binomial tree. At each node an unknown C enters in such a way that at the starting node we get a formula, A(1,1), that depends upon C. The code is as follows:
A=sym(zeros(1,Steps));
B=zeros(1,Steps);
syms C; % The unknown that enters A at every node
tic
for t=Steps-1:-1:1
% Values needed in A and B
Lambda=1-exp(-(1./S(t,1:t).^b).*h);
Q=((1./D(t))./(1-Lambda)-d)/(u-d);
R=normcdf(a0+a1*Lambda);
% the backward recursion for A and B
A(1:t)=D(t)*C+D(t)*...
(Q.*(1-Lambda).*A(1:t) ...
+ (1-Q).*(1-Lambda).*A(2:t+1));
B(1:t)=Lambda.*(1-R)+D(t)*...
(Q.*(1-Lambda).*B(1:t)...
+ (1-Q.*(1-Lambda).*B(2:t+1)));
end
C = solve(A(1,1)==sym(B(1,1)),C);
This code takes around 4 seconds if Steps = 104. If however we remove C and set matrix A to a regular double matrix, it only takes about 0.02 seconds. Using syms thus increases the calculation time by a factor 200. This seems too much to me. Any suggestions into speeding this up?
I am using Matlab 2013b on a MacBook air 13-inch spring 2013. Furthermore, if you're interested in the code before the above part (not sure whether it is relevant):
a0 = 0.9;
a1 = -3.2557;
b = 1.2594;
S0=18.57;
sigma=0.6579;
h=1/104;
T=1;
Steps=T/h;
f=transpose(normrnd(0.04, 0.001 [1 pl]));
D=exp(-h*f); % discount values
pl=T/h; % pathlength - amount of steps in maturity
u=exp(sigma*sqrt(h));
d=1/u;
u_row = repmat(cumprod([1 u*ones(1,pl-1)]),pl,1);
d_row = cumprod(tril(d*ones(pl),-1)+triu(ones(pl)),1);
path = tril(u_row.*d_row);
S=S0*path;
Unless I'm missing something, there's no need to use symbolic math or use an unknown variable. You can effectively assume that C = 1 in your recursion relation and solve for the actual value at the end. Here's the full code with some other improvements:
rng(1); % Always seed your random number generator
a0 = 0.9;
a1 = -3.2557;
b = 1.2594;
S0 = 18.57;
sigma = 0.6579;
h = 1/104;
T = 1;
Steps = T/h;
pl = T/h;
f = 0.04+0.001*randn(pl,1);
D = exp(-h*f);
u = exp(sigma*sqrt(h));
d = 1/u;
u_row = repmat(cumprod([1 u*ones(1,pl-1)]),pl,1);
d_row = cumprod(tril(d*ones(pl),-1)+triu(ones(pl)),1);
pth = tril(u_row.*d_row);
S = S0*pth;
A = zeros(1,Steps);
B = zeros(1,Steps);
tic
for t = Steps-1:-1:1
Lambda = 1-exp(-h./S(t,1:t).^b);
Q = ((1./D(t))./(1-Lambda)-d)/(u-d);
R = 0.5*erfc((-a0-a1*Lambda)/sqrt(2)); % Faster than normcdf
% Backward recursion for A and B
A = D(t)+D(t)*(Q.*(1-Lambda).*A(1:end-1) + ...
(1-Q).*(1-Lambda).*A(2:end));
B = Lambda.*(1-R)+D(t)*(Q.*(1-Lambda).*B(1:end-1) + ...
(1-Q.*(1-Lambda).*B(2:end)));
end
C = B/A
toc
This take about 0.005 seconds to run on my MacBook Pro. There are certainly other improvements you could make. There are many combinations of variables that are used in multiple places (e.g., 1-Lambda or D(t)*(1-Lambda)), that could be calculated once. Matlab may try to optimize this a bit. And you can try moving Lambda, Q, and R out of the loop – or at least calculate parts of them outside and save the results in arrays.

Simulation of Markov chains

I have the following Markov chain:
This chain shows the states of the Spaceship, which is in the asteroid belt: S1 - is serviceable, S2 - is broken. 0.12 - the probability of destroying the Spaceship by a collision with an asteroid. 0.88 - the probability of that a collision will not be critical. Need to find the probability of a serviceable condition of the ship after the third collision.
Analytical solution showed the response - 0.681. But it is necessary to solve this problem by simulation method using any modeling tool (MATLAB Simulink, AnyLogic, Scilab, etc.).
Do you know what components should be used to simulate this process in Simulink or any other simulation environment? Any examples or links.
First, we know the three step probability transition matrix contains the answer (0.6815).
% MATLAB R2019a
P = [0.88 0.12;
0 1];
P3 = P*P*P
P(1,1) % 0.6815
Approach 1: Requires Econometrics Toolbox
This approach uses the dtmc() and simulate() functions.
First, create the Discrete Time Markov Chain (DTMC) with the probability transition matrix, P, and using dtmc().
mc = dtmc(P); % Create the DTMC
numSteps = 3; % Number of collisions
You can get one sample path easily using simulate(). Pay attention to how you specify the initial conditions.
% One Sample Path
rng(8675309) % for reproducibility
X = simulate(mc,numSteps,'X0',[1 0])
% Multiple Sample Paths
numSamplePaths = 3;
X = simulate(mc,numSteps,'X0',[numSamplePaths 0]) % returns a 4 x 3 matrix
The first row is the X0 row for the starting state (initial condition) of the DTMC. The second row is the state after 1 transition (X1). Thus, the fourth row is the state after 3 transitions (collisions).
% 50000 Sample Paths
rng(8675309) % for reproducibility
k = 50000;
X = simulate(mc,numSteps,'X0',[k 0]); % returns a 4 x 50000 matrix
prob_survive_3collisions = sum(X(end,:)==1)/k % 0.6800
We can bootstrap a 95% Confidence Interval on the mean probability to survive 3 collisions to get 0.6814 ± 0.00069221, or rather, [0.6807 0.6821], which contains the result.
numTrials = 40;
ProbSurvive_3collisions = zeros(numTrials,1);
for trial = 1:numTrials
Xtrial = simulate(mc,numSteps,'X0',[k 0]);
ProbSurvive_3collisions(trial) = sum(Xtrial(end,:)==1)/k;
end
% Mean +/- Halfwidth
alpha = 0.05;
mean_prob_survive_3collisions = mean(ProbSurvive_3collisions)
hw = tinv(1-(0.5*alpha), numTrials-1)*(std(ProbSurvive_3collisions)/sqrt(numTrials))
ci95 = [mean_prob_survive_3collisions-hw mean_prob_survive_3collisions+hw]
maxNumCollisions = 10;
numSamplePaths = 50000;
ProbSurvive = zeros(maxNumCollisions,1);
for numCollisions = 1:maxNumCollisions
Xc = simulate(mc,numCollisions,'X0',[numSamplePaths 0]);
ProbSurvive(numCollisions) = sum(Xc(end,:)==1)/numSamplePaths;
end
For a more complex system you'll want to use Stateflow or SimEvents, but for this simple example all you need is a single Unit Delay block (output = 0 => S1, output = 1 => S2), with a Switch block, a Random block, and some comparison blocks to construct the logic determining the next value of the state.
Presumably you must execute the simulation a (very) large number of times and average the results to get a statistically significant output.
You'll need to change the "seed" of the random generator each time you run the simulation.
This can be done by setting the seed to be "now" (or something similar to that).
Alternatively you could quite easily vectorize the model so that you only need to execute it once.
If you want to simulate this, it is fairly easy in matlab:
servicable = 1;
t = 0;
while servicable =1
t = t+1;
servicable = rand()<=0.88
end
Now t represents the amount of steps before the ship is broken.
Wrap this in a for loop and you can do as many simulations as you like.
Note that this can actually give you the distribution, if you want to know it after 3 times, simply add && t<3 to the while condition.

creating a train perceptron in MATLAB for gender clasiffication

I am coding a perceptron to learn to categorize gender in pictures of faces. I am very very new to MATLAB, so I need a lot of help. I have a few questions:
I am trying to code for a function:
function [y] = testset(x,w)
%y = sign(sigma(x*w-threshold))
where y is the predicted results, x is the training/testing set put in as a very large matrix, and w is weight on the equation. The part after the % is what I am trying to write, but I do not know how to write this in MATLAB code. Any ideas out there?
I am trying to code a second function:
function [err] = testerror(x,w,y)
%err = sigma(max(0,-w*x*y))
w, x, and y have the same values as stated above, and err is my function of error, which I am trying to minimize through the steps of the perceptron.
I am trying to create a step in my perceptron to lower the percent of error by using gradient descent on my original equation. Does anyone know how I can increment w using gradient descent in order to minimize the error function using an if then statement?
I can put up the code I have up till now if that would help you answer these questions.
Thank you!
edit--------------------------
OK, so I am still working on the code for this, and would like to put it up when I have something more complete. My biggest question right now is:
I have the following function:
function [y] = testset(x,w)
y = sign(sum(x*w-threshold))
Now I know that I am supposed to put a threshold in, but cannot figure out what I am supposed to put in as the threshold! any ideas out there?
edit----------------------------
this is what I have so far. Changes still need to be made to it, but I would appreciate input, especially regarding structure, and advice for making the changes that need to be made!
function [y] = Perceptron_Aviva(X,w)
y = sign(sum(X*w-1));
end
function [err] = testerror(X,w,y)
err = sum(max(0,-w*X*y));
end
%function [w] = perceptron(X,Y,w_init)
%w = w_init;
%end
%------------------------------
% input samples
X = X_train;
% output class [-1,+1];
Y = y_train;
% init weigth vector
w_init = zeros(size(X,1));
w = w_init;
%---------------------------------------------
loopcounter = 0
while abs(err) > 0.1 && loopcounter < 100
for j=1:size(X,1)
approx_y(j) = Perceptron_Aviva(X(j),w(j))
err = testerror(X(j),w(j),approx_y(j))
if err > 0 %wrong (structure is correct, test is wrong)
w(j) = w(j) - 0.1 %wrong
elseif err < 0 %wrong
w(j) = w(j) + 0.1 %wrong
end
% -----------
% if sign(w'*X(:,j)) ~= Y(j) %wrong decision?
% w = w + X(:,j) * Y(j); %then add (or subtract) this point to w
end
you can read this question I did some time ago.
I uses a matlab code and a function perceptron
function [w] = perceptron(X,Y,w_init)
w = w_init;
for iteration = 1 : 100 %<- in practice, use some stopping criterion!
for ii = 1 : size(X,2) %cycle through training set
if sign(w'*X(:,ii)) ~= Y(ii) %wrong decision?
w = w + X(:,ii) * Y(ii); %then add (or subtract) this point to w
end
end
sum(sign(w'*X)~=Y)/size(X,2) %show misclassification rate
end
and it is called from code (#Itamar Katz) like (random data):
% input samples
X1=[rand(1,100);rand(1,100);ones(1,100)]; % class '+1'
X2=[rand(1,100);1+rand(1,100);ones(1,100)]; % class '-1'
X=[X1,X2];
% output class [-1,+1];
Y=[-ones(1,100),ones(1,100)];
% init weigth vector
w=[.5 .5 .5]';
% call perceptron
wtag=perceptron(X,Y,w);
% predict
ytag=wtag'*X;
% plot prediction over origianl data
figure;hold on
plot(X1(1,:),X1(2,:),'b.')
plot(X2(1,:),X2(2,:),'r.')
plot(X(1,ytag<0),X(2,ytag<0),'bo')
plot(X(1,ytag>0),X(2,ytag>0),'ro')
legend('class -1','class +1','pred -1','pred +1')
I guess this can give you an idea to make the functions you described.
To the error compare the expected result with the real result (class)
Assume your dataset is X, the datapoins, and Y, the labels of the classes.
f=newp(X,Y)
creates a perceptron.
If you want to create an MLP then:
f=newff(X,Y,NN)
where NN is the network architecture, i.e. an array that designates the number of neurons at each hidden layer. For example
NN=[5 3 2]
will correspond to an network with 5 neurons at the first layers, 3 at the second and 2 a the third hidden layer.
Well what you call threshold is the Bias in machine learning nomenclature. This should be left as an input for the user because it is used during training.
Also, I wonder why you are not using the builtin matlab functions. i.e newp or newff. e.g.
ff=newp(X,Y)
Then you can set the properties of the object ff to do your job for selecting gradient descent and so on.