Why mongodb only updates the first matching document in the collection? - mongodb

Consider a collection student contains the following documents.
{name:”Nithin”,age:23}
{name:”Nithin”,age:25}
{name:”Nithin”,age:28}
{name:”Nithin”,age:12}
I want to update all the documents whose name is “Nithin” as age=60.
If we execute the following query it will only update the first document.
db.student.update({name:”Nithin”},{age:60})
For update all the documents I have to use the query
db.student.update({name:”Nithin”},{age:60},false,true)
or
db.student.update({name:”Nithin”},{age:60},multi:true)
What is the reason by default mongodb not updating all the documents by executing db.student.update({name:”Nithin”},{age:60}) ? What is the motivation for creating separate queries for updating all the documents? Is it improving the performance?

Originally, in the early early days of MongoDB (pre 1.1) it was not possible to update multiple documents. This was a feature added around 1.1.3.
You can see it in the release notes, New Feature 268.
I'm guessing this was not enabled by default for backwards compatibility with previous versions.

This may not really be the reason but I find the additional multi parameter as a safeguard to prevent accidental update of multiple records when one intends to update a single document only, something like accidentally performing UPDATE...SET on SQL without specifying additional constraints.
Again this is just an assumption but may not really be the case.

I suppose part of the reason might be to avoid people coming from the SQL world to think about multi-document updates as isolated transactions.
In fact, during a long update MongoDB will periodically yield control to other queries which can potentially modify the same dataset.
So, by explicitly setting multi=true you are somewhat acknowledging this fact (well, not really, but I guess that's the spirit...)

Related

MongoDb concurrency best practices

I am new with MongoDb, I am creating an application that manage a very big list of items (resources), and for each resources the application should manage a kind of booking.
My idea is to embed booking document inside resource document, and to avoid concurrency problem I need to lock the resource during booking.
I see that MongoDB allow locks at collection level, but this will create a bottleneck on the booking functionality because all resources inside the collection will be looked until the current booking is in progress, so for a large amount of users and large amount of resources this solution will have poor performance.
In addition to that, in case of a deadlock occurred booking a resource, all resources will be locked.
Are there alternative solutions or best practices to improve performance and scalability of this use case?
A possible solution should be to have a lock not at collection level but a document level (the resource in my example), in this way a user booking a resource doesn't lock another user to book another resource, even if (also in this case) I am not sure of the final result because write commands are not executed in parallel: I suppose I'll probably also need a cluster of servers to manage multiple writes in parallel.
You are absolutely right, you should definitely not lock the entire collection for just updating a single document.
Now this problem depends on how you update your document.
If you update your document with a single update query, then since document update is atomic you would have no problem.
But if you first have to read the document, change the document, save the document, then you would have the concurrency problem. Just before you save the changed document, it could be updated by some other request and the document you have read would no longer be up to date, hence your new updates will not be right either.
The simple solution to this concurrency problem is solved by storing a version number(usually _v) in each of your documents. And for every update you increment the version number. Then every time you do a read & change & update, you make sure that the version of your read document and the version of that document in the database are identical. When the version number differs the update will fail and you can simply try again.
If you are using node.js, then you are probably using mongoose and mongoose will generate _v and do concurrency checks behind the scenes. So you do not have to do any extra job to solve this concurrency issue.

Denormalization vs Parent Referencing vs MapReduce

I have a highly normalized data model with me. Currently I'm using manual referencing by storing the _id and running sequential queries to fetch details from the deepest collection.
The referencing is one-way and the flow has around 5-6 collections. For one particular use case, I'm having to query down to the deepest collection by querying subsequent "_id" from the higher level collections. So technically I'm hitting the database every time I run a
db.collection_name.find(_id: ****).
My prime goal is to optimize the read without hugely affecting the atomicity of the other collections. I have read about de-normalization and it does not make sense to me because I want to keep an option for changing the cardinality down the line and hence want to maintain a separate collection altogether.
I was initially thinking of using MapReduce to do an aggregation from the back and have a collection primarily for the particular use-case. But well even that does not sound that good.
In a relational db, I would be breaking the query in sub-queries and performing a join to get the data sets that intersect from the initial results. Since mongodb does not support joins, I'm having a tough time figuring anything out.
Please help if you have faced anything like this earlier or have any idea how to resolve it.
Denormalize your data.
MongoDB does not do JOIN's - period.
There is no operation on the database which gets data from more than one collection. Not find(), not aggregate() and not MapReduce. When you need to puzzle your data together from more than one collection, there is no other way than doing it on the application layer. For that reason you should organize your data in a way that any common and performance-relevant query can be resolved by querying just a single collection.
In order to do that you might have to create redundancies and transitive dependencies. This is normal in MongoDB.
When this feels "dirty" to you, then you should either accept the fact that your performance will be sub-optimal or use a different kind of database, like a classic relational database or a graph database.

MongoDB: is indexing a pain?

Speaking in general, I want to know what are the best practices for querying (and therefore indexing) of schemaless data structures? (i.e. documents)
Lets say I use MongoDB to store and query deterministic data structures in a collection. At this point all documents have the same structure therefore I can easily create indexes for any queries in my app since I know each document has required field(s) for the index.
What happens after I change the structure and try to save new documents to the db? Lets say I joined two fields FirstName and Lastname to FullName. As a result the collection contains nondeterministic data. I see two problems here:
Old indexes cannot cover new data, therefore new indexes needed that handle both fields old and new
App should take care of dealing with two representations of the documents
This may result in a big problem when there are many changes in the db resulting in many versions of document structures.
I see two main approaches:
Lazy migration. This means that each document is migrated on demand (i.e. only after loading from collection) to final structure and then stored back to colection. This approach actually does not solve the problems because it concedes nondeterminism at any point of time.
Forced migration. This is the same approach as for RDBMS migrations. The migration is performed for all documents at one point of time while the app does not run. The main con is downtime of the app.
So the question: Is there any good way of solving the problem, especially without app downtime?
If you can't have downtime then the only choice is to do the migrations "on the fly":
Change the application so that when new documents are saved the new field is created, but read from the old ones.
Update your collection with a script/queries to add the new field in the collection.
Create new indexes on that field.
Change the application so that it reads from the new fields.
Drop the unnecessary indexes and remove the old fields from the documents.
Changing the schema on a live database is never an easy process, no matter what database you use. It always requires some forward thinking and careful planning.
is indexing a pain?
Indexing is not a pain, but premature optimization is. You should always test and check that you actually need indexes before adding them and when you have them, check that they are being properly used.
If you're worried about performance issues on a live system when creating indexes, then you should consider having replica sets and doing rolling maintenance (in short: taking secondaries down from replication, creating indexes on them, bringing them back into replication and then repeating the process for all the subsequent replica set members).
Edit
What I was describing is basically a process of migrating your schema to a new one while temporary supporting both versions of the documents.
In step 1, you're basically adding support for multiple versions of documents. You're updating existing documents i.e. creating new fields, while you're reading data from the previous version fields. Step 2 is optional, because you can gradually update your documents as they are being saved.
In step 4 you're removing the support for the previous versions from your application code and migrating to a new version. Finally, in step 5 you're removing the previous version fields from your actual MongoDB documents.

It's not possible to lock a mongodb document. What if I need to?

I know that I can't lock a single mongodb document, in fact there is no way to lock a collection either.
However, I've got this scenario, where I think I need some way to prevent more than one thread (or process, it's not important) from modifying a document. Here's my scenario.
I have a collection that contains object of type A. I have some code that retrieve a document of type A, add an element in an array that is a property of the document (a.arr.add(new Thing()) and then save back the document to mongodb. This code is parallel, multiple threads in my applications can do theses operations and for now there is no way to prevent to threads from doing theses operations in parallel on the same document. This is bad because one of the threads could overwrite the works of the other.
I do use the repository pattern to abstract the access to the mongodb collection, so I only have CRUDs operations at my disposition.
Now that I think about it, maybe it's a limitation of the repository pattern and not a limitation of mongodb that is causing me troubles. Anyway, how can I make this code "thread safe"? I guess there's a well known solution to this problem, but being new to mongodb and the repository pattern, I don't immediately sees it.
Thanks
Hey the only way of which I think now is to add an status parameter and use the operation findAndModify(), which enables you to atomically modify a document. It's a bit slower, but should do the trick.
So let's say you add an status attribut and when you retrieve the document change the status from "IDLE" to "PROCESSING". Then you update the document and save it back to the collection updating the status to "IDLE" again.
Code example:
var doc = db.runCommand({
"findAndModify" : "COLLECTION_NAME",
"query" : {"_id": "ID_DOCUMENT", "status" : "IDLE"},
"update" : {"$set" : {"status" : "RUNNING"} }
}).value
Change the COLLECTION_NAME and ID_DOCUMENT to a proper value. By default findAndModify() returns the old value, which means the status value will be still IDLE on the client side. So when you are done with updating just save/update everything again.
The only think you need be be aware is that you can only modify one document at a time.
Hope it helps.
Stumbled into this question while working on mongodb upgrades. Unlike at the time this question was asked, now mongodb supports document level locking out of the box.
From: http://docs.mongodb.org/manual/faq/concurrency/
"How granular are locks in MongoDB?
Changed in version 3.0.
Beginning with version 3.0, MongoDB ships with the WiredTiger storage engine, which uses optimistic concurrency control for most read and write operations. WiredTiger uses only intent locks at the global, database and collection levels. When the storage engine detects conflicts between two operations, one will incur a write conflict causing MongoDB to transparently retry that operation."
Classic solution when you want to make something thread-safe is to use locks (mutexes).
This is also called pessimistic locking as opposed to optimistic locking described here.
There are scenarios when pessimistic locking is more efficient (more details here). It is also far easier to implement (major difficulty of optimistic locking is recovery from collision).
MongoDB does not provide mechanism for a lock. But this can be easily implemented at application level (i.e. in your code):
Acquire lock
Read document
Modify document
Write document
Release lock
The granularity of the lock can be different: global, collection-specific, record/document-specific. The more specific the lock the less its performance penalty.
"Doctor, it hurts when I do this"
"Then don't do that!"
Basically, what you're describing sounds like you've got a serial dependency there -- MongoDB or whatever, your algorithm has a point at which the operation has to be serialized. That will be an inherent bottleneck, and if you absolutely must do it, you'll have to arrange some kind of semaphore to protect it.
So, the place to look is at your algorithm. Can you eliminate that? Could you, for example, handle it with some kind of conflict resolution, like "get record into local' update; store record" so that after the store the new record would be the one gotten on that key?
Answering my own question because I found a solution while doing research on the Internet.
I think what I need to do is use an Optimistic Concurency Control.
It consist in adding a timestamp, a hash or another unique identifier (I'll used UUIDs) to every documents. The unique identifier must be modified each time the document is modified. before updating the document I'll do something like this (in pseudo-code) :
var oldUUID = doc.uuid;
doc.uuid = new UUID();
BeginTransaction();
if (GetDocUUIDFromDatabase(doc.id) == oldUUID)
{
SaveToDatabase(doc);
Commit();
}
else
{
// Document was modified in the DB since we read it. We can't save our changes.
RollBack();
throw new ConcurencyException();
}
Update:
With MongoDB 3.2.2 using WiredTiger Storage implementation as default engine, MongoDB use default locking at document level.It was introduced in version 3.0 but made default in version 3.2.2. Therefore MongoDB now has document level locking.
As of 4.0, MongoDB supports Transactions for replica sets. Support for sharded clusters will come in MongoDB 4.2. Using transactions, DB updates will be aborted if a conflicting write occurs, solving your issue.
Transactions are much more costly in terms of performance so don't use Transactions as an excuse for poor NoSQL schema design!
An alternative is to do in place update
for ex:
http://www.mongodb.org/display/DOCS/Updating#comment-41821928
db.users.update( { level: "Sourcerer" }, { '$push' : { 'inventory' : 'magic wand'} }, false, true );
which will push 'magic wand' into all "Sourcerer" user's inventory array. Update to each document/user is atomic.
If you have a system with > 1 servers then you'll need a distributive lock.
I prefer to use Hazelcast.
While saving you can get Hazelcast lock by entity id, fetch and update data, then release a lock.
As an example:
https://github.com/azee/template-api/blob/master/template-rest/src/main/java/com/mycompany/template/scheduler/SchedulerJob.java
Just use lock.lock() instead of lock.tryLock()
Here you can see how to configure Hazelcast in your spring context:
https://github.com/azee/template-api/blob/master/template-rest/src/main/resources/webContext.xml
Instead of writing the question in another question, I try to answer this one: I wonder if this WiredTiger Storage will handle the problem I pointed out here:
Limit inserts in mongodb
If the order of the elements in the array is not important for you then the $push operator should be safe enough to prevent threads from overwriting each others changes.
I had a similar problem where I had multiple instances of the same application which would pull data from the database (the order did not matter; all documents had to be updated - efficiently), work on it and write back the results. However, without any locking in place, all instances obviously pulled the same document(s) instead of intelligently distributing their workforce.
I tried to solve it by implementing a lock on application level, which would add an locked-field in the corresponding document when it was currently being edited, so that no other instance of my application would pick the same document and waste time on it by performing the same operation as the other instance(s).
However, when running dozens or more instances of my application, the timespan between reading the document (using find()) and setting the locked-field to true (using update()) where to long and the instances still pulled the same documents from the database, making my idea of speeding up the work using multiple instances pointless.
Here are 3 suggestions that might solve your problem depending on your situation:
Use findAndModify() since the read and write operations are atomic using that function. Theoretically, a document requested by one instance of your application should then appear as locked for the other instances. And when the document is unlocked and visible for other instances again, it is also modified.
If however, you need to do other stuff in between the read find() and write update() operations, you could you use transactions.
Alternatively, if that does not solve your problem, a bit of a cheese solution (which might suffice) is making the application pull documents in large batches and making each instance pick a random document from that batch and work on it. Obvisously this shady solution is based on the fact that coincidence will not punish your application's efficieny.
Sounds like you want to use MongoDB's atomic operators: http://www.mongodb.org/display/DOCS/Atomic+Operations

Is it OK to call ensureIndex on non-existent collections?

I read somewhere that calling ensureIndex() actually creates a collection if it does not exist. But the index is always on some fields, not all of them, so if I ensure an index on say { name:1 } and then add documents to that collection that have many more fields, the index will work? I know we don't have a schema, coming from RDBMS world I just want to make sure. :) I'd like to create indexes when my website starts, but initially the database is empty. I do not need to have any data prior to ensuring indexes, is that correct?
ensureIndex will create the collection if it does not yet exist. It does not matter if you add documents that don't have the property that the index covers, you just can't use that index to find those documents. The way I understand it is that in versions before 1.7.4 a document that is missing a property for which there is an index will be indexed as though it had that property, but will a null value. In versions after 1.7.4 you can create sparse indexes that don't include these objects at all. The difference is slight but may be significant in some situations.
Depending on the circumstances it may not be a good idea to create indexes when the app starts. Consider the situation where you deploy a new version which adds new indexes when it starts up, in development you will not notice this as you only have a small database, but in production you may have a huge database and adding the index will take a lot of time. During the index creation your app will hang and you can't serve requests. You can create indexes with the background flag set to true (the syntax depends on which driver you're using), but in most cases it's better to add indexes manually, or as part of a setup script. That way you will have to think before you update indexes.
Deprecated since version 3.0: db.collection.ensureIndex() has been
replaced by db.collection.createIndex().
Ref: https://docs.mongodb.com/manual/reference/method/db.collection.ensureIndex/