I am looking to get a random record from a huge collection (100 million records).
What is the fastest and most efficient way to do so?
The data is already there and there are no field in which I can generate a random number and obtain a random row.
Starting with the 3.2 release of MongoDB, you can get N random docs from a collection using the $sample aggregation pipeline operator:
// Get one random document from the mycoll collection.
db.mycoll.aggregate([{ $sample: { size: 1 } }])
If you want to select the random document(s) from a filtered subset of the collection, prepend a $match stage to the pipeline:
// Get one random document matching {a: 10} from the mycoll collection.
db.mycoll.aggregate([
{ $match: { a: 10 } },
{ $sample: { size: 1 } }
])
As noted in the comments, when size is greater than 1, there may be duplicates in the returned document sample.
Do a count of all records, generate a random number between 0 and the count, and then do:
db.yourCollection.find().limit(-1).skip(yourRandomNumber).next()
Update for MongoDB 3.2
3.2 introduced $sample to the aggregation pipeline.
There's also a good blog post on putting it into practice.
For older versions (previous answer)
This was actually a feature request: http://jira.mongodb.org/browse/SERVER-533 but it was filed under "Won't fix."
The cookbook has a very good recipe to select a random document out of a collection: http://cookbook.mongodb.org/patterns/random-attribute/
To paraphrase the recipe, you assign random numbers to your documents:
db.docs.save( { key : 1, ..., random : Math.random() } )
Then select a random document:
rand = Math.random()
result = db.docs.findOne( { key : 2, random : { $gte : rand } } )
if ( result == null ) {
result = db.docs.findOne( { key : 2, random : { $lte : rand } } )
}
Querying with both $gte and $lte is necessary to find the document with a random number nearest rand.
And of course you'll want to index on the random field:
db.docs.ensureIndex( { key : 1, random :1 } )
If you're already querying against an index, simply drop it, append random: 1 to it, and add it again.
You can also use MongoDB's geospatial indexing feature to select the documents 'nearest' to a random number.
First, enable geospatial indexing on a collection:
db.docs.ensureIndex( { random_point: '2d' } )
To create a bunch of documents with random points on the X-axis:
for ( i = 0; i < 10; ++i ) {
db.docs.insert( { key: i, random_point: [Math.random(), 0] } );
}
Then you can get a random document from the collection like this:
db.docs.findOne( { random_point : { $near : [Math.random(), 0] } } )
Or you can retrieve several document nearest to a random point:
db.docs.find( { random_point : { $near : [Math.random(), 0] } } ).limit( 4 )
This requires only one query and no null checks, plus the code is clean, simple and flexible. You could even use the Y-axis of the geopoint to add a second randomness dimension to your query.
The following recipe is a little slower than the mongo cookbook solution (add a random key on every document), but returns more evenly distributed random documents. It's a little less-evenly distributed than the skip( random ) solution, but much faster and more fail-safe in case documents are removed.
function draw(collection, query) {
// query: mongodb query object (optional)
var query = query || { };
query['random'] = { $lte: Math.random() };
var cur = collection.find(query).sort({ rand: -1 });
if (! cur.hasNext()) {
delete query.random;
cur = collection.find(query).sort({ rand: -1 });
}
var doc = cur.next();
doc.random = Math.random();
collection.update({ _id: doc._id }, doc);
return doc;
}
It also requires you to add a random "random" field to your documents so don't forget to add this when you create them : you may need to initialize your collection as shown by Geoffrey
function addRandom(collection) {
collection.find().forEach(function (obj) {
obj.random = Math.random();
collection.save(obj);
});
}
db.eval(addRandom, db.things);
Benchmark results
This method is much faster than the skip() method (of ceejayoz) and generates more uniformly random documents than the "cookbook" method reported by Michael:
For a collection with 1,000,000 elements:
This method takes less than a millisecond on my machine
the skip() method takes 180 ms on average
The cookbook method will cause large numbers of documents to never get picked because their random number does not favor them.
This method will pick all elements evenly over time.
In my benchmark it was only 30% slower than the cookbook method.
the randomness is not 100% perfect but it is very good (and it can be improved if necessary)
This recipe is not perfect - the perfect solution would be a built-in feature as others have noted.
However it should be a good compromise for many purposes.
Here is a way using the default ObjectId values for _id and a little math and logic.
// Get the "min" and "max" timestamp values from the _id in the collection and the
// diff between.
// 4-bytes from a hex string is 8 characters
var min = parseInt(db.collection.find()
.sort({ "_id": 1 }).limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
max = parseInt(db.collection.find()
.sort({ "_id": -1 })limit(1).toArray()[0]._id.str.substr(0,8),16)*1000,
diff = max - min;
// Get a random value from diff and divide/multiply be 1000 for The "_id" precision:
var random = Math.floor(Math.floor(Math.random(diff)*diff)/1000)*1000;
// Use "random" in the range and pad the hex string to a valid ObjectId
var _id = new ObjectId(((min + random)/1000).toString(16) + "0000000000000000")
// Then query for the single document:
var randomDoc = db.collection.find({ "_id": { "$gte": _id } })
.sort({ "_id": 1 }).limit(1).toArray()[0];
That's the general logic in shell representation and easily adaptable.
So in points:
Find the min and max primary key values in the collection
Generate a random number that falls between the timestamps of those documents.
Add the random number to the minimum value and find the first document that is greater than or equal to that value.
This uses "padding" from the timestamp value in "hex" to form a valid ObjectId value since that is what we are looking for. Using integers as the _id value is essentially simplier but the same basic idea in the points.
Now you can use the aggregate.
Example:
db.users.aggregate(
[ { $sample: { size: 3 } } ]
)
See the doc.
In Python using pymongo:
import random
def get_random_doc():
count = collection.count()
return collection.find()[random.randrange(count)]
Using Python (pymongo), the aggregate function also works.
collection.aggregate([{'$sample': {'size': sample_size }}])
This approach is a lot faster than running a query for a random number (e.g. collection.find([random_int]). This is especially the case for large collections.
it is tough if there is no data there to key off of. what are the _id field? are they mongodb object id's? If so, you could get the highest and lowest values:
lowest = db.coll.find().sort({_id:1}).limit(1).next()._id;
highest = db.coll.find().sort({_id:-1}).limit(1).next()._id;
then if you assume the id's are uniformly distributed (but they aren't, but at least it's a start):
unsigned long long L = first_8_bytes_of(lowest)
unsigned long long H = first_8_bytes_of(highest)
V = (H - L) * random_from_0_to_1();
N = L + V;
oid = N concat random_4_bytes();
randomobj = db.coll.find({_id:{$gte:oid}}).limit(1);
You can pick a random timestamp and search for the first object that was created afterwards.
It will only scan a single document, though it doesn't necessarily give you a uniform distribution.
var randRec = function() {
// replace with your collection
var coll = db.collection
// get unixtime of first and last record
var min = coll.find().sort({_id: 1}).limit(1)[0]._id.getTimestamp() - 0;
var max = coll.find().sort({_id: -1}).limit(1)[0]._id.getTimestamp() - 0;
// allow to pass additional query params
return function(query) {
if (typeof query === 'undefined') query = {}
var randTime = Math.round(Math.random() * (max - min)) + min;
var hexSeconds = Math.floor(randTime / 1000).toString(16);
var id = ObjectId(hexSeconds + "0000000000000000");
query._id = {$gte: id}
return coll.find(query).limit(1)
};
}();
My solution on php:
/**
* Get random docs from Mongo
* #param $collection
* #param $where
* #param $fields
* #param $limit
* #author happy-code
* #url happy-code.com
*/
private function _mongodb_get_random (MongoCollection $collection, $where = array(), $fields = array(), $limit = false) {
// Total docs
$count = $collection->find($where, $fields)->count();
if (!$limit) {
// Get all docs
$limit = $count;
}
$data = array();
for( $i = 0; $i < $limit; $i++ ) {
// Skip documents
$skip = rand(0, ($count-1) );
if ($skip !== 0) {
$doc = $collection->find($where, $fields)->skip($skip)->limit(1)->getNext();
} else {
$doc = $collection->find($where, $fields)->limit(1)->getNext();
}
if (is_array($doc)) {
// Catch document
$data[ $doc['_id']->{'$id'} ] = $doc;
// Ignore current document when making the next iteration
$where['_id']['$nin'][] = $doc['_id'];
}
// Every iteration catch document and decrease in the total number of document
$count--;
}
return $data;
}
In order to get a determinated number of random docs without duplicates:
first get all ids
get size of documents
loop geting random index and skip duplicated
number_of_docs=7
db.collection('preguntas').find({},{_id:1}).toArray(function(err, arr) {
count=arr.length
idsram=[]
rans=[]
while(number_of_docs!=0){
var R = Math.floor(Math.random() * count);
if (rans.indexOf(R) > -1) {
continue
} else {
ans.push(R)
idsram.push(arr[R]._id)
number_of_docs--
}
}
db.collection('preguntas').find({}).toArray(function(err1, doc1) {
if (err1) { console.log(err1); return; }
res.send(doc1)
});
});
The best way in Mongoose is to make an aggregation call with $sample.
However, Mongoose does not apply Mongoose documents to Aggregation - especially not if populate() is to be applied as well.
For getting a "lean" array from the database:
/*
Sample model should be init first
const Sample = mongoose …
*/
const samples = await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 33 } },
]).exec();
console.log(samples); //a lean Array
For getting an array of mongoose documents:
const samples = (
await Sample.aggregate([
{ $match: {} },
{ $sample: { size: 27 } },
{ $project: { _id: 1 } },
]).exec()
).map(v => v._id);
const mongooseSamples = await Sample.find({ _id: { $in: samples } });
console.log(mongooseSamples); //an Array of mongoose documents
I would suggest using map/reduce, where you use the map function to only emit when a random value is above a given probability.
function mapf() {
if(Math.random() <= probability) {
emit(1, this);
}
}
function reducef(key,values) {
return {"documents": values};
}
res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": { "probability": 0.5}});
printjson(res.results);
The reducef function above works because only one key ('1') is emitted from the map function.
The value of the "probability" is defined in the "scope", when invoking mapRreduce(...)
Using mapReduce like this should also be usable on a sharded db.
If you want to select exactly n of m documents from the db, you could do it like this:
function mapf() {
if(countSubset == 0) return;
var prob = countSubset / countTotal;
if(Math.random() <= prob) {
emit(1, {"documents": [this]});
countSubset--;
}
countTotal--;
}
function reducef(key,values) {
var newArray = new Array();
for(var i=0; i < values.length; i++) {
newArray = newArray.concat(values[i].documents);
}
return {"documents": newArray};
}
res = db.questions.mapReduce(mapf, reducef, {"out": {"inline": 1}, "scope": {"countTotal": 4, "countSubset": 2}})
printjson(res.results);
Where "countTotal" (m) is the number of documents in the db, and "countSubset" (n) is the number of documents to retrieve.
This approach might give some problems on sharded databases.
You can pick random _id and return corresponding object:
db.collection.count( function(err, count){
db.collection.distinct( "_id" , function( err, result) {
if (err)
res.send(err)
var randomId = result[Math.floor(Math.random() * (count-1))]
db.collection.findOne( { _id: randomId } , function( err, result) {
if (err)
res.send(err)
console.log(result)
})
})
})
Here you dont need to spend space on storing random numbers in collection.
The following aggregation operation randomly selects 3 documents from the collection:
db.users.aggregate(
[ { $sample: { size: 3 } } ]
)
https://docs.mongodb.com/manual/reference/operator/aggregation/sample/
MongoDB now has $rand
To pick n non repeat items, aggregate with { $addFields: { _f: { $rand: {} } } } then $sort by _f and $limit n.
I'd suggest adding a random int field to each object. Then you can just do a
findOne({random_field: {$gte: rand()}})
to pick a random document. Just make sure you ensureIndex({random_field:1})
When I was faced with a similar solution, I backtracked and found that the business request was actually for creating some form of rotation of the inventory being presented. In that case, there are much better options, which have answers from search engines like Solr, not data stores like MongoDB.
In short, with the requirement to "intelligently rotate" content, what we should do instead of a random number across all of the documents is to include a personal q score modifier. To implement this yourself, assuming a small population of users, you can store a document per user that has the productId, impression count, click-through count, last seen date, and whatever other factors the business finds as being meaningful to compute a q score modifier. When retrieving the set to display, typically you request more documents from the data store than requested by the end user, then apply the q score modifier, take the number of records requested by the end user, then randomize the page of results, a tiny set, so simply sort the documents in the application layer (in memory).
If the universe of users is too large, you can categorize users into behavior groups and index by behavior group rather than user.
If the universe of products is small enough, you can create an index per user.
I have found this technique to be much more efficient, but more importantly more effective in creating a relevant, worthwhile experience of using the software solution.
non of the solutions worked well for me. especially when there are many gaps and set is small.
this worked very well for me(in php):
$count = $collection->count($search);
$skip = mt_rand(0, $count - 1);
$result = $collection->find($search)->skip($skip)->limit(1)->getNext();
My PHP/MongoDB sort/order by RANDOM solution. Hope this helps anyone.
Note: I have numeric ID's within my MongoDB collection that refer to a MySQL database record.
First I create an array with 10 randomly generated numbers
$randomNumbers = [];
for($i = 0; $i < 10; $i++){
$randomNumbers[] = rand(0,1000);
}
In my aggregation I use the $addField pipeline operator combined with $arrayElemAt and $mod (modulus). The modulus operator will give me a number from 0 - 9 which I then use to pick a number from the array with random generated numbers.
$aggregate[] = [
'$addFields' => [
'random_sort' => [ '$arrayElemAt' => [ $randomNumbers, [ '$mod' => [ '$my_numeric_mysql_id', 10 ] ] ] ],
],
];
After that you can use the sort Pipeline.
$aggregate[] = [
'$sort' => [
'random_sort' => 1
]
];
My simplest solution to this ...
db.coll.find()
.limit(1)
.skip(Math.floor(Math.random() * 500))
.next()
Where you have at least 500 items on collections
If you have a simple id key, you could store all the id's in an array, and then pick a random id. (Ruby answer):
ids = #coll.find({},fields:{_id:1}).to_a
#coll.find(ids.sample).first
Using Map/Reduce, you can certainly get a random record, just not necessarily very efficiently depending on the size of the resulting filtered collection you end up working with.
I've tested this method with 50,000 documents (the filter reduces it to about 30,000), and it executes in approximately 400ms on an Intel i3 with 16GB ram and a SATA3 HDD...
db.toc_content.mapReduce(
/* map function */
function() { emit( 1, this._id ); },
/* reduce function */
function(k,v) {
var r = Math.floor((Math.random()*v.length));
return v[r];
},
/* options */
{
out: { inline: 1 },
/* Filter the collection to "A"ctive documents */
query: { status: "A" }
}
);
The Map function simply creates an array of the id's of all documents that match the query. In my case I tested this with approximately 30,000 out of the 50,000 possible documents.
The Reduce function simply picks a random integer between 0 and the number of items (-1) in the array, and then returns that _id from the array.
400ms sounds like a long time, and it really is, if you had fifty million records instead of fifty thousand, this may increase the overhead to the point where it becomes unusable in multi-user situations.
There is an open issue for MongoDB to include this feature in the core... https://jira.mongodb.org/browse/SERVER-533
If this "random" selection was built into an index-lookup instead of collecting ids into an array and then selecting one, this would help incredibly. (go vote it up!)
This works nice, it's fast, works with multiple documents and doesn't require populating rand field, which will eventually populate itself:
add index to .rand field on your collection
use find and refresh, something like:
// Install packages:
// npm install mongodb async
// Add index in mongo:
// db.ensureIndex('mycollection', { rand: 1 })
var mongodb = require('mongodb')
var async = require('async')
// Find n random documents by using "rand" field.
function findAndRefreshRand (collection, n, fields, done) {
var result = []
var rand = Math.random()
// Append documents to the result based on criteria and options, if options.limit is 0 skip the call.
var appender = function (criteria, options, done) {
return function (done) {
if (options.limit > 0) {
collection.find(criteria, fields, options).toArray(
function (err, docs) {
if (!err && Array.isArray(docs)) {
Array.prototype.push.apply(result, docs)
}
done(err)
}
)
} else {
async.nextTick(done)
}
}
}
async.series([
// Fetch docs with unitialized .rand.
// NOTE: You can comment out this step if all docs have initialized .rand = Math.random()
appender({ rand: { $exists: false } }, { limit: n - result.length }),
// Fetch on one side of random number.
appender({ rand: { $gte: rand } }, { sort: { rand: 1 }, limit: n - result.length }),
// Continue fetch on the other side.
appender({ rand: { $lt: rand } }, { sort: { rand: -1 }, limit: n - result.length }),
// Refresh fetched docs, if any.
function (done) {
if (result.length > 0) {
var batch = collection.initializeUnorderedBulkOp({ w: 0 })
for (var i = 0; i < result.length; ++i) {
batch.find({ _id: result[i]._id }).updateOne({ rand: Math.random() })
}
batch.execute(done)
} else {
async.nextTick(done)
}
}
], function (err) {
done(err, result)
})
}
// Example usage
mongodb.MongoClient.connect('mongodb://localhost:27017/core-development', function (err, db) {
if (!err) {
findAndRefreshRand(db.collection('profiles'), 1024, { _id: true, rand: true }, function (err, result) {
if (!err) {
console.log(result)
} else {
console.error(err)
}
db.close()
})
} else {
console.error(err)
}
})
ps. How to find random records in mongodb question is marked as duplicate of this question. The difference is that this question asks explicitly about single record as the other one explicitly about getting random documents.
For me, I wanted to get the same records, in a random order, so I created an empty array used to sort, then generated random numbers between one and 7( I have seven fields). So each time I get a different value, I assign a different random sort.
It is 'layman' but it worked for me.
//generate random number
const randomval = some random value;
//declare sort array and initialize to empty
const sort = [];
//write a conditional if else to get to decide which sort to use
if(randomval == 1)
{
sort.push(...['createdAt',1]);
}
else if(randomval == 2)
{
sort.push(...['_id',1]);
}
....
else if(randomval == n)
{
sort.push(...['n',1]);
}
If you're using mongoid, the document-to-object wrapper, you can do the following in
Ruby. (Assuming your model is User)
User.all.to_a[rand(User.count)]
In my .irbrc, I have
def rando klass
klass.all.to_a[rand(klass.count)]
end
so in rails console, I can do, for example,
rando User
rando Article
to get documents randomly from any collection.
you can also use shuffle-array after executing your query
var shuffle = require('shuffle-array');
Accounts.find(qry,function(err,results_array){
newIndexArr=shuffle(results_array);
What works efficiently and reliably is this:
Add a field called "random" to each document and assign a random value to it, add an index for the random field and proceed as follows:
Let's assume we have a collection of web links called "links" and we want a random link from it:
link = db.links.find().sort({random: 1}).limit(1)[0]
To ensure the same link won't pop up a second time, update its random field with a new random number:
db.links.update({random: Math.random()}, link)
I have a collection1 of documents with tags in MongoDB. The tags are an embedded array of strings:
{
name: 'someObj',
tags: ['tag1', 'tag2', ...]
}
I want to know the count of each tag in the collection. Therefore I have another collection2 with tag counts:
{
{
tag: 'tag1',
score: 2
}
{
tag: 'tag2',
score: 10
}
}
Now I have to keep both in sync. It is rather trivial when inserting to or removing from collection1. However when I update collection1 I do the following:
1.) get the old document
var oldObj = collection1.find({ _id: id });
2.) calculate the difference between old and new tag arrays
var removedTags = $(oldObj.tags).not(obj.tags).get();
var insertedTags = $(obj.tags).not(oldObj.tags).get();
3.) update the old document
collection1.update(
{ _id: id },
{ $set: obj }
);
4.) update the scores of inserted & removed tags
// increment score of each inserted tag
insertedTags.forEach(function(val, idx) {
// $inc will set score = 1 on insert
collection2.update(
{ tag: val },
{ $inc: { score: 1 } },
{ upsert: true }
)
});
// decrement score of each removed tag
removedTags.forEach(function(val, idx) {
// $inc will set score = -1 on insert
collection2.update(
{ tag: val },
{ $inc: { score: -1 } },
{ upsert: true }
)
});
My questions:
A) Is this approach of keeping book of scores separately efficient? Or is there a more efficient one-time query to get the scores from collection1?
B) Even if keeping book separately is the better choice: can that be done in less steps, e.g. letting mongoDB calculate what tags are new / removed?
The solution, as nickmilion correctly states, would be an aggregation. Though I would do it with a nack: we'll save its results in a collection. What will do is to trade real time results for an extreme speed boost.
How I would do it
More often than not, the need for real time results is overestimated. Hence, I'd go with precalculated stats for the tags and renew it every 5 minutes or so. That should be well enough, since most of such calls are requested async by the client and hence some delay in case the calculation has to be made on a specific request is negligible.
db.tags.aggregate(
{$unwind:"$tags"},
{$group: { _id:"$tags", score:{"$sum":1} } },
{$out:"tagStats"}
)
db.tagStats.update(
{'lastRun':{$exists:true}},
{'lastRun':new Date()},
{upsert:true}
)
db.tagStats.ensureIndex({lastRun:1}, {sparse:true})
Ok, here is the deal. First, we unwind the tags array, group it by the individual tags and increment the score for each occurrence of the respective tag. Next, we upsert lastRun in the tagStats collection, which we can do since MongoDB is schemaless. Next, we create a sparse index, which only holds values for documents in which the indexed field exists. In case the index already exists, ensureIndex is an extremely cheap query; however, since we are going to use that query in our code, we don't need to create the index manually. With this procedure, the following query
db.tagStats.find(
{lastRun:{ $lte: new Date( ISODate().getTime() - 300000 ) } },
{_id:0, lastRun:1}
)
becomes a covered query: A query which is answered from the index, which tends to reside in RAM, making this query lightning fast (slightly less than 0.5 msecs median in my tests). So what does this query do? It will return a record when the last run of the aggregation was run more than 5 minutes ( 5*60*1000 = 300000 msecs) ago. Of course, you can adjust this to your needs.
Now, we can wrap it up:
var hasToRun = db.tagStats.find(
{lastRun:{ $lte: new Date( ISODate().getTime() - 300000 ) } },
{_id:0, lastRun:1}
);
if(hasToRun){
db.tags.aggregate(
{$unwind:"$tags"},
{$group: {_id:"$tags", score:{"$sum":1} } },
{$out:"tagStats"}
)
db.tagStats.update(
{'lastRun':{$exists:true}},
{'lastRun':new Date()},
{upsert:true}
);
db.tagStats.ensureIndex({lastRun:1},{sparse:true});
}
// For all stats
var tagsStats = db.tagStats.find({score:{$exists:true}});
// score for a specific tag
var scoreForTag = db.tagStats.find({score:{$exists:true},_id:"tag1"});
Alternative approach
If real time results really matter and you need the stats for all the tags, simply use the aggregation without saving it to another collection:
db.tags.aggregate(
{$unwind:"$tags"},
{$group: { _id:"$tags", score:{"$sum":1} } },
)
If you only need the results for one specific tag at a time, a real time approach could be to use a special index, create a covered query and simply count the results:
db.tags.ensureIndex({tags:1})
var numberOfOccurences = db.tags.find({tags:"tag1"},{_id:0,tags:1}).count();
answering your questions:
B): you don't have to calculate the dif yourself use $addToSet
A): you can get the counts via aggregation framework with a combination of $unwind and $count
When running a normal "find" query on MongoDB I can get the total result count (regardless of limit) by running "count" on the returned cursor. So, even if I limit to result set to 10 (for example) I can still know that the total number of results was 53 (again, for example).
If I understand it correctly, the aggregation framework, however, doesn't return a cursor but simply the results. And so, if I used the $limit pipeline operator, how can I know the total number of results regardless of said limit?
I guess I could run the aggregation twice (once to count the results via $group, and once with $limit for the actual limited results), but this seems inefficient.
An alternative approach could be to attach the total number of results to the documents (via $group) prior to the $limit operation, but this also seems inefficient as this number will be attached to every document (instead of just returned once for the set).
Am I missing something here? Any ideas? Thanks!
For example, if this is the query:
db.article.aggregate(
{ $group : {
_id : "$author",
posts : { $sum : 1 }
}},
{ $sort : { posts: -1 } },
{ $limit : 5 }
);
How would I know how many results are available (before $limit)? The result isn't a cursor, so I can't just run count on it.
There is a solution using push and slice: https://stackoverflow.com/a/39784851/4752635 (#emaniacs mentions it here as well).
But I prefer using 2 queries. Solution with pushing $$ROOT and using $slice runs into document memory limitation of 16MB for large collections. Also, for large collections two queries together seem to run faster than the one with $$ROOT pushing. You can run them in parallel as well, so you are limited only by the slower of the two queries (probably the one which sorts).
First for filtering and then grouping by ID to get number of filtered elements. Do not filter here, it is unnecessary.
Second query which filters, sorts and paginates.
I have settled with this solution using 2 queries and aggregation framework (note - I use node.js in this example):
var aggregation = [
{
// If you can match fields at the begining, match as many as early as possible.
$match: {...}
},
{
// Projection.
$project: {...}
},
{
// Some things you can match only after projection or grouping, so do it now.
$match: {...}
}
];
// Copy filtering elements from the pipeline - this is the same for both counting number of fileter elements and for pagination queries.
var aggregationPaginated = aggregation.slice(0);
// Count filtered elements.
aggregation.push(
{
$group: {
_id: null,
count: { $sum: 1 }
}
}
);
// Sort in pagination query.
aggregationPaginated.push(
{
$sort: sorting
}
);
// Paginate.
aggregationPaginated.push(
{
$limit: skip + length
},
{
$skip: skip
}
);
// I use mongoose.
// Get total count.
model.count(function(errCount, totalCount) {
// Count filtered.
model.aggregate(aggregation)
.allowDiskUse(true)
.exec(
function(errFind, documents) {
if (errFind) {
// Errors.
res.status(503);
return res.json({
'success': false,
'response': 'err_counting'
});
}
else {
// Number of filtered elements.
var numFiltered = documents[0].count;
// Filter, sort and pagiante.
model.request.aggregate(aggregationPaginated)
.allowDiskUse(true)
.exec(
function(errFindP, documentsP) {
if (errFindP) {
// Errors.
res.status(503);
return res.json({
'success': false,
'response': 'err_pagination'
});
}
else {
return res.json({
'success': true,
'recordsTotal': totalCount,
'recordsFiltered': numFiltered,
'response': documentsP
});
}
});
}
});
});
Assaf, there's going to be some enhancements to the aggregation framework in the near future that may allow you to do your calculations in one pass easily, but right now, it is best to perform your calculations by running two queries in parallel: one to aggregate the #posts for your top authors, and another aggregation to calculate the total posts for all authors. Also, note that if all you need to do is a count on documents, using the count function is a very efficient way of performing the calculation. MongoDB caches counts within btree indexes allowing for very quick counts on queries.
If these aggregations turn out to be slow there are a couple of strategies. First off, keep in mind that you want start the query with a $match if applicable to reduce the result set. $matches can also be speed up by indexes. Secondly, you can perform these calculations as pre-aggregations. Instead of possible running these aggregations every time a user accesses some part of your app, have the aggregations run periodically in the background and store the aggregations in a collection that contains pre-aggregated values. This way, your pages can simply query the pre-calculated values from this collection.
$facets aggregation operation can be used for Mongo versions >= 3.4.
This allows to fork at a particular stage of a pipeline in multiple sub-pipelines allowing in this case to build one sub pipeline to count the number of documents and another one for sorting, skipping, limiting.
This allows to avoid making same stages multiple times in multiple requests.
If you don't want to run two queries in parallel (one to aggregate the #posts for your top authors, and another aggregation to calculate the total posts for all authors) you can just remove $limit on pipeline and on results you can use
totalCount = results.length;
results.slice(number of skip,number of skip + number of limit);
ex:
db.article.aggregate([
{ $group : {
_id : "$author",
posts : { $sum : 1 }
}},
{ $sort : { posts: -1 } }
//{$skip : yourSkip}, //--remove this
//{ $limit : yourLimit }, // remove this too
]).exec(function(err, results){
var totalCount = results.length;//--GEt total count here
results.slice(yourSkip,yourSkip+yourLimit);
});
I got the same problem, and solved with $project, $slice and $$ROOT.
db.article.aggregate(
{ $group : {
_id : '$author',
posts : { $sum : 1 },
articles: {$push: '$$ROOT'},
}},
{ $sort : { posts: -1 } },
{ $project: {total: '$posts', articles: {$slice: ['$articles', from, to]}},
).toArray(function(err, result){
var articles = result[0].articles;
var total = result[0].total;
});
You need to declare from and to variable.
https://docs.mongodb.com/manual/reference/operator/aggregation/slice/
in my case, we use $out stage to dump result set from aggeration into a temp/cache table, then count it. and, since we need to sort and paginate results, we add index on the temp table and save table name in session, remove the table on session closing/cache timeout.
I get total count with aggregate().toArray().length
Bit of an odd one on query performance... I need to run a query which does a total count of documents, and can also return a result set that can be limited and offset.
So, I have 57 documents in total, and the user wants 10 documents offset by 20.
I can think of 2 ways of doing this, first is query for all 57 documents (returned as an array), then using array.slice return the documents they want. The second option is to run 2 queries, the first one using mongo's native 'count' method, then run a second query using mongo's native $limit and $skip aggregators.
Which do you think would scale better? Doing it all in one query, or running two separate ones?
Edit:
// 1 query
var limit = 10;
var offset = 20;
Animals.find({}, function (err, animals) {
if (err) {
return next(err);
}
res.send({count: animals.length, animals: animals.slice(offset, limit + offset)});
});
// 2 queries
Animals.find({}, {limit:10, skip:20} function (err, animals) {
if (err) {
return next(err);
}
Animals.count({}, function (err, count) {
if (err) {
return next(err);
}
res.send({count: count, animals: animals});
});
});
I suggest you to use 2 queries:
db.collection.count() will return total number of items. This value is stored somewhere in Mongo and it is not calculated.
db.collection.find().skip(20).limit(10) here I assume you could use a sort by some field, so do not forget to add an index on this field. This query will be fast too.
I think that you shouldn't query all items and than perform skip and take, cause later when you have big data you will have problems with data transferring and processing.
Instead of using 2 separate queries, you can use aggregate() in a single query:
Aggregate "$facet" can be fetch more quickly, the Total Count and the Data with skip & limit
db.collection.aggregate([
//{$sort: {...}}
//{$match:{...}}
{$facet:{
"stage1" : [ {"$group": {_id:null, count:{$sum:1}}} ],
"stage2" : [ { "$skip": 0}, {"$limit": 2} ]
}},
{$unwind: "$stage1"},
//output projection
{$project:{
count: "$stage1.count",
data: "$stage2"
}}
]);
output as follows:-
[{
count: 50,
data: [
{...},
{...}
]
}]
Also, have a look at https://docs.mongodb.com/manual/reference/operator/aggregation/facet/
db.collection_name.aggregate([
{ '$match' : { } },
{ '$sort' : { '_id' : -1 } },
{ '$facet' : {
metadata: [ { $count: "total" } ],
data: [ { $skip: 1 }, { $limit: 10 },{ '$project' : {"_id":0} } ] // add projection here wish you re-shape the docs
} }
] )
Instead of using two queries to find the total count and skip the matched record.
$facet is the best and optimized way.
Match the record
Find total_count
skip the record
And also can reshape data according to our needs in the query.
There is a library that will do all of this for you, check out mongoose-paginate-v2
After having to tackle this issue myself, I would like to build upon user854301's answer.
Mongoose ^4.13.8 I was able to use a function called toConstructor() which allowed me to avoid building the query multiple times when filters are applied. I know this function is available in older versions too but you'll have to check the Mongoose docs to confirm this.
The following uses Bluebird promises:
let schema = Query.find({ name: 'bloggs', age: { $gt: 30 } });
// save the query as a 'template'
let query = schema.toConstructor();
return Promise.join(
schema.count().exec(),
query().limit(limit).skip(skip).exec(),
function (total, data) {
return { data: data, total: total }
}
);
Now the count query will return the total records it matched and the data returned will be a subset of the total records.
Please note the () around query() which constructs the query.
You don't have to use two queries or one complicated query with aggregate and such.
You can use one query
example:
const getNames = async (queryParams) => {
const cursor = db.collection.find(queryParams).skip(20).limit(10);
return {
count: await cursor.count(),
data: await cursor.toArray()
}
}
mongo returns a cursor that has predefined functions such as count, which will return the full count of the queried results regardless of skip and limit
So in count property, you will get the full length of the collection and in data, you will get just the chunk with offset of 20 and limit of 10 documents
Thanks Igor Igeto Mitkovski, a best solution is using native connection
document is here: https://docs.mongodb.com/manual/reference/method/cursor.count/#mongodb-method-cursor.count
and mongoose dont support it ( https://github.com/Automattic/mongoose/issues/3283 )
we have to use native connection.
const query = StudentModel.collection.find(
{
age: 13
},
{
projection:{ _id:0 }
}
).sort({ time: -1 })
const count = await query.count()
const records = await query.skip(20)
.limit(10).toArray()