I am looking for a way to merge two Matlab plots. I have the figure files for each of them as fig1.fig and fig2.fig One figure contains a plot which runs for a certain range e.g 1 to 100 and the other figure contains the continuation of the first plot e.g 101 to 200. Each of these plots takes around 8 hours, so I do not want to replot them. Is there any simple way of merging these two plots?
It sounds like you want to join up your data, so you need to extract the x and y data from each of your plots. If you have a line plot, you can load the first .fig file
e.g.
and then type
a = gca
handles = findobj(a)
isLine = strcmp(get(handles, 'Type'), 'line')
XData1 = get(handles(isLine), 'XData')
YData1 = get(handles(isLine), 'YData')
That will extract the x and y data for your line, from your first plot.
Now close all your figures and load your second plot:
a = gca
handles = findobj(a)
isLine = strcmp(get(handles, 'Type'), 'line')
XData2 = get(handles(isLine), 'XData')
YData2 = get(handles(isLine), 'YData')
You can now plot your merged plot with:
figure
plot([XData1 XData2], [YData1 YData2])
title('mergedPlot')
Related
I am trying to plot data from a csv file, I have successfully uploaded the csv as an array for each column. I'm then trying to find the peaks of each column, I need to then plot the peaks for each to a time constant (tau). I have been getting an error that I need to have the same size vectors to plot. I'm also trying to plot all sets of data on one plot and have a curve fit for each.
Please help me out!
code is below
Array=csvread("D:\Grad Lab\NMR\Data\T1 Data\compiledT1nolabel.csv");
tau = Array(:,1);
Water= Array(:,2);
Mineral_Oil = Array(:,3);
Glycerol = Array(:,4);
CuSO4_1=Array(:,5);
CuSO4_2=Array(:,6);
CuSO4_3=Array(:,7);
CuSO4_4=Array(:,8);
CuSO4_5=Array(:,9);
pks1 = findpeaks(Water);
pks2 = findpeaks(Mineral_Oil);
pks3 = findpeaks(Glycerol);
pks4 = findpeaks(CuSO4_1);
pks5 = findpeaks(CuSO4_2);
pks6 = findpeaks(CuSO4_3);
pks7 = findpeaks(CuSO4_4);
pks8 = findpeaks(CuSO4_5);
plot(pks1,tau)
The problem is that the pks vectors and the corresponding data arrays you are trying to plot don't have the same size: calling the plot function on vectors of different sizes produces the error.
In the sample script below, data contains a bunch of values. Invoking findpeaks with two outputs (i.e. locs and pks) allows both the locations and peak values to be stored. Now we can use locs and pks with plot to mark the peaks as follows:
data = [25 8 15 5 6 10 10 3 1 20 7];
[pks, locs] = findpeaks(data);
plot(data); hold
plot(locs, pks, 'd')
produces the following plot:
Alternatively, if you are just interested in plotting, you could use
findpeaks(data)
without any output: it will produce a plot like this:
For the OP's specific case, I modified his script as follows (just covered one set of peaks, the pattern should be clear):
Array=csvread("D:\Grad Lab\NMR\Data\T1 Data\compiledT1nolabel.csv");
tau = Array(:,1);
Water = Array(:,2);
[pks1, locs1] = findpeaks(Water);
figure
plot(tau, Water); hold on;
plot(tau(locs1), pks1, 'd');
I'm trying to make a stack plot from a table, to present several variables with the same x-axis. however, I want the x-axis to be logarithmic. I couldn't find any way in stackplot documentation. Does anyone have any suggestions on how I can solve this?
I have tried using subplots instead, however, that way my graphs would not fit all on one page and I would have a lot of white space between the subplots. Therefore, I chose stackplot to make it more nice and less space-consuming.
tbl = readtable('usage.csv');
newYlabels = {'Heating (kWh/year)','Cooling (kWh/year)','Electricity (kWh/year)'};
stackedplot(tbl,[{2:16},{17:27},{28:35}],'XVariable',[1],'DisplayLabels',newYlabels);
Here is the output of the code:
Here is an image of what I'm trying to make, but the x-axis needs to be the real variable (\beta) in logarithmic scale
stackedplot has unfortunately no logarithmic axes option, and since it creates a StackedAxes instead of a normal Axes object, there is no way to changes this.
If the only reason you want to use stackedplot is to have less white-space, you might want to check out tight_subplot on the Matlab FEX. This would allow you to just do: set(ax, 'XScale', 'log').
You can however take the log of your x-data, and add that to the table:
tbl = readtable('outages.csv'); % sample data
tbl = sortrows(tbl, 'OutageTime'); % sort by date
% make x vector; for example just row numbers
x = (1:size(tbl,1)).';
xlog = log10(x);
% add x to table
tbl.Xlog = xlog;
tbl.X = x;
% plot normal x
f = figure(1); clf;
s = stackedplot(tbl, {'Loss'}, 'XVariable', 'X');
xlabel('rows');
% plot log(x)
f = figure(2); clf;
s = stackedplot(tbl, {'Loss'}, 'XVariable', 'Xlog');
xlabel('log(rows)')
Normal:
Log:
My Octave workflow is the following:
I have tons of data to process, and lots of plots to generate. For each plot,
I have a function that does all the work, generates its own plot and returns the handle of this plot for future modifications (if needed). Something like this:
function [h,p] = processData_and_generatePlot_A(datainput)
%%.....
h = figure();
p = plot(h, ...)
%%....
end
Now, what I'm trying to do is a script calling all this functions, collecting all the figures, and trying to combine all of them in only one figure (i.e., each plot generated should be a subplot in a new figure).
So, the questions are:
Is it possible to pass the plot handler to the subplot function, so the plot is printed instead of generate a new one?
If not, is there any way to insert existing plots into a new figure?
Thanks in advance
A method for merging plots in different figures as subplot of a new figure actually exists. What afraids me is that you have "lots of plots to generate", so you must define a criterion for splitting the existing plots into N figures in order to avoid cramming all of them into a single figure.
The aforementioned approach involves the usage of the copyobj function, and here is an example that you can easily modify following your needs:
f1 = figure();
x1 = -10:0.1:10;
y1 = sin(x1);
p1 = plot(x1,y1,'r');
f2 = figure();
x2 = -10:0.1:10;
y2 = cos(x2);
p2 = plot(x2,y2,'r');
pause(5);
f3 = figure();
sub1 = subplot(1,2,1);
sub2 = subplot(1,2,2);
copyobj(p1,sub1);
delete(f1);
copyobj(p2,sub2);
delete(f2);
I have four sets of data, the distribution of which I would like to represent in MATLAB in one figure. Current code is:
[n1,x1]=hist([dataset1{:}]);
[n2,x2]=hist([dataset2{:}]);
[n3,x3]=hist([dataset3{:}]);
[n4,x4]=hist([dataset4{:}]);
bar(x1,n1,'hist');
hold on; h1=bar(x1,n1,'hist'); set(h1,'facecolor','g')
hold on; h2=bar(x2,n2,'hist'); set(h2,'facecolor','g')
hold on; h3=bar(x3,n3,'hist'); set(h3,'facecolor','g')
hold on; h4=bar(x4,n4,'hist'); set(h4,'facecolor','g')
hold off
My issue is that I have different sampling sizes for each group, dataset1 has an n of 69, dataset2 has an n of 23, dataset3 and dataset4 have n's of 10. So how do I normalize the distributions when representing these three groups together?
Is there some way to..for example..divide the instances in each bin by the sampling for that group?
You can normalize your histograms by dividing by the total number of elements:
[n1,x1] = histcounts(randn(69,1));
[n2,x2] = histcounts(randn(23,1));
[n3,x3] = histcounts(randn(10,1));
[n4,x4] = histcounts(randn(10,1));
hold on
bar(x4(1:end-1),n4./sum(n4),'histc');
bar(x3(1:end-1),n3./sum(n3),'histc');
bar(x2(1:end-1),n2./sum(n2),'histc');
bar(x1(1:end-1),n1./sum(n1),'histc');
hold off
ax = gca;
set(ax.Children,{'FaceColor'},mat2cell(lines(4),ones(4,1),3))
set(ax.Children,{'FaceAlpha'},repmat({0.7},4,1))
However, as you can see above, you can do some more things to make your code more simple and short:
You only need to hold on once.
Instead of collecting all the bar handles, use the axes handle.
Plot the bar in ascending order of the number of elements in the dataset, so all histograms will be clearly visible.
With the axes handle set all properties at one command.
and as a side note - it's better to use histcounts.
Here is the result:
EDIT:
If you want to also plot the pdf line from histfit, then you can save it first, and then plot it normalized:
dataset = {randn(69,1),randn(23,1),randn(10,1),randn(10,1)};
fits = zeros(100,2,numel(dataset));
hold on
for k = numel(dataset):-1:1
total = numel(dataset{k}); % for normalizing
f = histfit(dataset{k}); % draw the histogram and fit
% collect the curve data and normalize it:
fits(:,:,k) = [f(2).XData; f(2).YData./total].';
x = f(1).XData; % collect the bar positions
n = f(1).YData; % collect the bar counts
f.delete % delete the histogram and the fit
bar(x,n./total,'histc'); % plot the bar
end
ax = gca; % get the axis handle
% set all color and transparency for the bars:
set(ax.Children,{'FaceColor'},mat2cell(lines(4),ones(4,1),3))
set(ax.Children,{'FaceAlpha'},repmat({0.7},4,1))
% plot all the curves:
plot(squeeze(fits(:,1,:)),squeeze(fits(:,2,:)),'LineWidth',3)
hold off
Again, there are some other improvements you can introduce to your code:
Put everything in a loop to make thigs more easily changed later.
Collect all the curves data to one variable so you can plot them all together very easily.
The new result is:
I'm trying to find a way to nicely plot my measurement data of digital signals.
So I have my data available as csv and mat file, exported from an Agilent Oscilloscope. The reason I'm not just taking a screen shot of the Oscilloscope screen is that I need to be more flexible (make several plots with one set of data, only showing some of the lines). Also I need to be able to change the plot in a month or two so my only option is creating a plot from the data with a computer.
What I'm trying to achieve is something similar to this picture:
The only thing missing on that pic is a yaxis with 0 and 1 lines.
My first try was to make a similar plot with Matlab. Here's what I got:
What's definitely missing is that the signal names are right next to the actual line and also 0 and 1 ticks on the y-axis.
I'm not even sure if Matlab is the right tool for this and I hope you guys can give me some hints/a solution on how to make my plots :-)
Here's my Matlab code:
clear;
close all;
clc;
MD.RAW = load('Daten/UVLOT1 debounced 0.mat'); % get MeasurementData
MD.N(1) = {'INIT\_DONE'};
MD.N(2) = {'CONF\_DONE'};
MD.N(3) = {'NSDN'};
MD.N(4) = {'NRST'};
MD.N(5) = {'1V2GD'};
MD.N(6) = {'2V5GD'};
MD.N(7) = {'3V3GD'};
MD.N(8) = {'5VGD'};
MD.N(9) = {'NERR'};
MD.N(10) = {'PGD'};
MD.N(11) = {'FGD'};
MD.N(12) = {'IGAGD'};
MD.N(13) = {'GT1'};
MD.N(14) = {'NERRA'};
MD.N(15) = {'GT1D'};
MD.N(16) = {'GB1D'};
% concat vectors into one matrix
MD.D = [MD.RAW.Trace_D0, MD.RAW.Trace_D1(:,2), MD.RAW.Trace_D2(:,2), MD.RAW.Trace_D3(:,2), ...
MD.RAW.Trace_D4(:,2), MD.RAW.Trace_D5(:,2), MD.RAW.Trace_D6(:,2), MD.RAW.Trace_D7(:,2), ...
MD.RAW.Trace_D8(:,2), MD.RAW.Trace_D9(:,2), MD.RAW.Trace_D10(:,2), MD.RAW.Trace_D11(:,2), ...
MD.RAW.Trace_D12(:,2), MD.RAW.Trace_D13(:,2), MD.RAW.Trace_D14(:,2), MD.RAW.Trace_D15(:,2)];
cm = hsv(size(MD.D,2)); % make colormap for plot
figure;
hold on;
% change timebase to ns
MD.D(:,1) = MD.D(:,1) * 1e9;
% plot lines
for i=2:1:size(MD.D,2)
plot(MD.D(:,1), MD.D(:,i)+(i-2)*1.5, 'color', cm(i-1,:));
end
hold off;
legend(MD.N, 'Location', 'EastOutside');
xlabel('Zeit [ns]'); % x axis label
title('Messwerte'); % title
set(gca, 'ytick', []); % hide y axis
Thank you guys for your help!
Dan
EDIT:
Here's a pic what I basically want. I added the signal names via text now the only thing that's missing are the 0, 1 ticks. They are correct for the init done signal. Now I just need them repeated instead of the other numbers on the y axis (sorry, kinda hard to explain :-)
So as written in my comment to the question. For appending Names to each signal I would recommend searching the documentation of how to append text to graph. There you get many different ways how to do it. You can change the position (above, below) and the exact point of data. As an example you could use:
text(x_data, y_data, Var_Name,'VerticalAlignment','top');
Here (x_data, y_data) is the data point where you want to append the text and Var_Name is the name you want to append.
For the second question of how to get a y-data which contains 0 and 1 values for each signal. I would do it by creating your signal the way, that your first signal has values of 0 and 1. The next signal is drawn about 2 higher. Thus it changes from 2 to 3 and so on. That way when you turn on y-axis (grid on) you get values at each integer (obviously you can change that to other values if you prefer less distance between 2 signals). Then you can relabel the y-axis using the documentation of axes (check the last part, because the documentation is quite long) and the set() function:
set(gca, 'YTick',0:1:last_entry, 'YTickLabel',new_y_label(0:1:last_entry))
Here last_entry is 2*No_Signals-1 and new_y_label is an array which is constructed of 0,1,0,1,0,....
For viewing y axis, you can turn the grid('on') option. However, you cannot chage the way the legends appear unless you resize it in the matlab figure. If you really want you can insert separate textboxes below each of the signal plots by using the insert ->Textbox option and then change the property (linestyle) of the textbox to none to get the exact same plot as above.
This is the end result and all my code, in case anybody else wants to use the good old ctrl-v ;-)
Code:
clear;
close all;
clc;
MD.RAW = load('Daten/UVLOT1 debounced 0.mat'); % get MeasurementData
MD.N(1) = {'INIT\_DONE'};
MD.N(2) = {'CONF\_DONE'};
MD.N(3) = {'NSDN'};
MD.N(4) = {'NRST'};
MD.N(5) = {'1V2GD'};
MD.N(6) = {'2V5GD'};
MD.N(7) = {'3V3GD'};
MD.N(8) = {'5VGD'};
MD.N(9) = {'NERR'};
MD.N(10) = {'PGD'};
MD.N(11) = {'FGD'};
MD.N(12) = {'IGAGD'};
MD.N(13) = {'GT1'};
MD.N(14) = {'NERRA'};
MD.N(15) = {'GT1D'};
MD.N(16) = {'GB1D'};
% concat vectors into one matrix
MD.D = [MD.RAW.Trace_D0, MD.RAW.Trace_D1(:,2), MD.RAW.Trace_D2(:,2), MD.RAW.Trace_D3(:,2), ...
MD.RAW.Trace_D4(:,2), MD.RAW.Trace_D5(:,2), MD.RAW.Trace_D6(:,2), MD.RAW.Trace_D7(:,2), ...
MD.RAW.Trace_D8(:,2), MD.RAW.Trace_D9(:,2), MD.RAW.Trace_D10(:,2), MD.RAW.Trace_D11(:,2), ...
MD.RAW.Trace_D12(:,2), MD.RAW.Trace_D13(:,2), MD.RAW.Trace_D14(:,2), MD.RAW.Trace_D15(:,2)];
cm = hsv(size(MD.D,2)); % make colormap for plot
figure;
hold on;
% change timebase to ns
MD.D(:,1) = MD.D(:,1) * 1e9;
% plot lines
for i=2:1:size(MD.D,2)
plot(MD.D(:,1), MD.D(:,i)+(i-2)*2, 'color', cm(i-1,:));
text(MD.D(2,1), (i-2)*2+.5, MD.N(i-1));
end
hold off;
%legend(MD.N, 'Location', 'EastOutside');
xlabel('Zeit [ns]'); % x axis label
title('Messwerte'); % title
% make y axis and grid the way I want it
set(gca, 'ytick', 0:size(MD.D,2)*2-3);
grid off;
set(gca,'ygrid','on');
set(gca, 'YTickLabel', {'0'; '1'});
ylim([-1,(size(MD.D,2)-1)*2]);