I have a vector ("d") which I want to place it's content to a matrix ("dis"), I have the problem to create "dis" matrix. "dis" should be like
dis=[
1 2 3 4 5 6 7 8 9 10 11 12
0 1 2 3 4 5 6 7 8 9 10 11
0 0 1 2 3 4 5 6 7 8 9 10
0 0 0 1 2 3 4 5 6 7 8 9
0 0 0 0 1 2 3 4 5 6 7 8
0 0 0 0 0 1 2 3 4 5 6 7
0 0 0 0 0 0 1 2 3 4 5 6
0 0 0 0 0 0 0 1 2 3 4 5
0 0 0 0 0 0 0 0 1 2 3 4
0 0 0 0 0 0 0 0 0 1 2 3
0 0 0 0 0 0 0 0 0 0 1 2
0 0 0 0 0 0 0 0 0 0 0 1];
n=[0,0;1,0;2,0;3,0;4,0;5,0;6,0;7,0;8,0;9,0;10,0;11,0;12,0];
d=pdist(n,'euclidean');
l=length(n)-1;
dis=[];
for k=1:length(n)-1
dis=[dis;d((k-1)*l-(k*((k-1)/2))+k):d(k*l-((k+1)*k/2)+k)];
end
The problem is that you are not padding dis with the zeros.
You can replace
dis=[];
for k=1:length(n)-1
dis=[dis;d((k-1)*l-(k*((k-1)/2))+k):d(k*l-((k+1)*k/2)+k)];
end
with
dis = zeros(l);
for k=1:l
dis(k,k:end) = d((k-1)*l-(k*((k-1)/2))+k):d(k*l-((k+1)*k/2)+k)
end
Using squareform form #beaker comment above, you can write:
dis = triu(squareform(d));
dis = dis(1:length(dis)-1,2:length(dis));
Does this solves the problem?
I want to concatenate last four bits of binary into a number i have tried the following code
x8=magic(4)
x8_n=dec2bin(x8)
m=x8_n-'0'
which gives me the following output
m =
1 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 1 1
0 0 1 1 1
0 1 1 1 0
0 0 0 1 1
0 1 0 1 0
0 0 1 1 0
0 1 1 1 1
0 1 1 0 1
0 1 0 0 0
0 1 1 0 0
0 0 0 0 1
now i want to take every last 4 bits it each row and convert it into an integer
n = 4; %// number of bits you want
result = m(:,end-n+1:end) * pow2(n-1:-1:0).'; %'// matrix multiplication
Anyway, it would be easier to use mod on x8 directly, without the intermediate step of m:
result = mod(x8(:), 2^n);
In your example:
result =
0
5
9
4
2
11
7
14
3
10
6
15
13
8
12
1
This could be another approach -
n = 4; %%// number of bits you want
out = bin2dec(num2str(m(:,end-n+1:end)))
Output -
out =
0
5
9
4
2
11
7
14
3
10
6
15
13
8
12
1
Let's say I have a square matrix M:
M = [0 0 0 0 0 1 9; 0 0 0 0 0 4 4; 0 0 1 1 6 1 1; 0 1 2 9 2 1 0; 2 1 8 3 2 0 0; 0 8 1 1 0 0 0; 14 2 0 1 0 0 0]
0 0 0 0 0 1 9
0 0 0 0 0 4 4
0 0 1 1 6 1 1
M = 0 1 2 9 2 1 0
2 1 8 3 2 0 0
0 8 1 1 0 0 0
14 2 0 1 0 0 0
Now I'd like to calculate two different cumulative sums: One that goes from the top of each column to the element of the column, that is a diagonal element of the matrix, and one that goes from the bottom of the column to the same diagonal element.
The resulting matrix M'should therefore be the following:
0 0 0 0 0 1 9
0 0 0 0 0 4 5
0 0 1 1 6 2 1
M' = 0 1 3 9 4 1 0
2 2 8 5 2 0 0
2 8 1 2 0 0 0
14 2 0 1 0 0 0
I hope the explanation of what I'm trying to achieve is comprehensible enough. Since my matrices are much larger than the one in this example, the calculation should be efficient as well...but so far I couldn't even figure out how to calculate it "inefficiently".
In one line using some flipping and the upper triangular function triu:
Mp = fliplr(triu(fliplr(cumsum(M)),1)) ...
+flipud(triu(cumsum(flipud(M)),1)) ...
+flipud(diag(diag(flipud(M))));
The following will do the job:
Mnew = fliplr(triu(cumsum(triu(fliplr(M)),1))) + flipud(triu(cumsum(triu(flipud(M)),1)));
Mnew = Mnew - fliplr(diag(diag(fliplr(Mnew)))) + fliplr(diag(diag(fliplr(M))));
But is it the fastest method?
I think logical indexing might get you there faster
In matlab, if you have a matrix A you can find the matrix B containing all of the unique rows of A as follows:
B = unique(A,'rows');
What I have is a 3d matrix, with rows and columns as the first two dimensions, and one additional dimension ('slices').
How can I get the 3d matrix containing all the unique slices in a matrix A? Here's an example of the kind of functionality I want:
>> A % print out A
A(:,:,1) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A(:,:,2) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
A(:,:,3) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A(:,:,4) =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
>> unique(A,'slices'); % get unique slices
A(:,:,1) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A(:,:,2) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
A(:,:,3) =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
I would begin by reshaping A so each slice becomes a row (with the reshape command). Then use unique(A, 'rows'). Finally, reshape the unique rows back to the same shape the slices.
For example:
% transforming so each row is a slice in row form
reshaped_A = reshape(A, [], size(A, 3))';
% getting unique rows
unique_rows = unique(reshaped_A, 'rows');
% reshaping back
unique_slices = reshape(unique_rows', size(A, 1), size(A, 2), []);
Or all in one line:
reshape(unique(reshape(A, [], size(A, 3))', 'rows')', size(A, 1), size(A, 2), [])
I haven't checked this above code so use with caution! But it should give the idea.
EDIT
Here it is working on your data (also fixed little bug in above code):
>> reshaped_A = reshape(A, [], size(A, 3))'
reshaped_A =
Columns 1 through 11
16 5 9 4 2 11 7 14 3 10 6
1 0 0 0 0 1 0 0 0 0 1
16 5 9 4 2 11 7 14 3 10 6
0 0 0 1 0 0 1 0 0 1 0
Columns 12 through 16
15 13 8 12 1
0 0 0 0 1
15 13 8 12 1
0 1 0 0 0
Each of these ^^ rows is one of the original slices
>> unique_rows = unique(reshaped_A, 'rows')
unique_rows =
Columns 1 through 11
0 0 0 1 0 0 1 0 0 1 0
1 0 0 0 0 1 0 0 0 0 1
16 5 9 4 2 11 7 14 3 10 6
Columns 12 through 16
0 1 0 0 0
0 0 0 0 1
15 13 8 12 1
These ^^ are the unique slices, but in the wrong shape.
>> unique_slices = reshape(unique_rows', size(A, 1), size(A, 2), [])
unique_slices(:,:,1) =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
unique_slices(:,:,2) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
unique_slices(:,:,3) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A very simple and scalable solution would be:
A = cat(3, [16 2 3 13;5 11 10 8;9 7 6 12;4 14 15 1], [1 0 0 0;0 1 0 0;0 0 1 0;0 0 0 1], [16 2 3 13;5 11 10 8;9 7 6 12;4 14 15 1], [0 0 0 1;0 0 1 0;0 1 0 0;1 0 0 0])
[n,m,p] = size(A);
a = reshape(A,n,[],1);
b = reshape(a(:),n*m,[])';
c = unique(b,'rows', 'stable')'; %If the 'stable' option is supported by your version.
%If the 'stable' option is not supported, but it's still required, use the index vector option, as required.
%i.e.,
%[c,I,J] = unique(b,'rows');
unique_A = reshape(c,n,m,[])
Results:
A(:,:,1) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A(:,:,2) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
A(:,:,3) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
A(:,:,4) =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
unique_A(:,:,1) =
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0
unique_A(:,:,2) =
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
unique_A(:,:,3) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1
Source: How to find unique pages in a 3d matrix?
I haven't fully understood how qtdecomp works...
I = [1 1 1 1 2 3 6 6
1 1 2 1 4 5 6 8
1 1 1 1 10 15 7 7
1 1 1 1 20 25 7 7
20 22 20 22 1 2 3 4
20 22 22 20 5 6 7 8
20 22 20 20 9 10 11 12
22 22 20 20 13 14 15 16];
S = qtdecomp(I,2);
disp(full(S));
The results of this are:
4 0 0 0 1 1 2 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 2 0
0 0 0 0 1 1 0 0
4 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
in the left bottom 4*4 matrix, maximum value (22) of the block elements minus the minimum value (20) is 2, so when decomposing this part, it will left as is.
When I do this on a uint8 matrix:
I = uint8([...
1 1 1 1 2 3 6 6
1 1 2 1 4 5 6 8
1 1 1 1 10 15 7 7
1 1 1 1 20 25 7 7
20 22 20 22 1 2 3 4
20 22 22 20 5 6 7 8
20 22 20 20 9 10 11 12
22 22 20 20 13 14 15 16]);
S = qtdecomp(I,2/255);
disp(full(S));
the answer is just like before. But when I change S to this:
S = qtdecomp(I,1.9/255);
The answer is
4 0 0 0 1 1 2 0
0 0 0 0 1 1 0 0
0 0 0 0 1 1 2 0
0 0 0 0 1 1 0 0
4 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
0 0 0 0 1 1 1 1
I suppose the left bottom 4*4 matrix should decompose, but why doesn't it?
What matlab does here is when I is uint8 it multiples the threshold by 255 and rounds it, so 1.9/255 is evaluated to 2.
You can see this by opening the source code for qtdecomp (by pressing ctrl+D) or here. There's an if/elseif near the end of the file (params{1} = round(255 * params{1});).
You should be able to use S = qtdecomp(I,1/255); to get the result you are looking for.