How do Akka and Async differ - scala

I went to a very interesting lecture on Async (https://github.com/scala/async) a new library for Scala, what I am not sure about is how Akka and Async differ.
I am new to Scala so apologies if the answer is obvious.
Thanks.

Async simplifies asynchronous and concurrent programming. Async enables programming with non-blocking APIs in a familiar direct style. Direct-style code is as simple to write as blocking code, but it has all the advantages of efficient non-blocking code.
Out-of-the-box, Async makes programming with Scala's futures more convenient. In fact, by using Async with futures, your easy-to-read direct-style code is transformed to highly-efficient non-blocking code under the hood. Async can also be connected to other APIs (see below).
Akka provides a programming model and runtime to simplify concurrency, distribution, and fault tolerance. Async does not provide a runtime--it makes existing abstractions and their runtimes easier to use. However, Async and Akka can work together in several important ways:
Using Akka's "ask" pattern, sending a message using "?" returns a future. Async makes it easy to work with those futures.
Async can be connected to APIs other than Scala's Futures API. This opens up interesting ways to leverage Async to simplify programming with Akka actors. This is one area that we are going to explore in the near future at Typesafe.
Async is a replacement for Akka's dataflow API which is simpler and more robust. Async is simpler, because it does not introduce complex types stemming from the use of Scala's CPS plugin. Async is more robust, since it works well together with features like pattern matching and try-catch which are not fully supported by CPS/Akka's dataflow API. Moreover, it is clearly specified where Async cannot be used (await cannot occur inside closures, nested classes/traits/objects, or by-name arguments).
For more Async examples and documentation see my recent talk on Async and the documentation on the Async project website.

Async just adds helpfull API (and some other good internal things) for working with Future and has nothing to do with Actor model while Akka is a framework for creating massively-distributed with Actors. They have different use cases and have nothing in common. It more correctly to compare Async with Scala/Akka Futures API. I don't have much experience with Async, but the main point, is that you have two constructs async and await. Async marks a block of asynchronous code wich contains one or more await calls, which marks a point at which the computation will be suspended until the awaited Future is complete. Such API can be compared with a standart way of using map and flatmap .
Using standart API (for construct translates to combination of map and flatmap):
def slowCalcFuture: Future[Int] = ...
val future1 = slowCalcFuture
val future2 = slowCalcFuture
def combined: Future[Int] = for {
r1 <- future1
r2 <- future2
} yield r1 + r2
And Async:
def slowCalcFuture: Future[Int] = ...
def combined: Future[Int] = async {
val future1 = slowCalcFuture
val future2 = slowCalcFuture
await(future1) + await(future2)
}

Related

What is Future and Promise in Scala? [duplicate]

I am trying to get my head around Scala's promise and future constructs.
I've been reading Futures and Promises in Scala Documentation and am a bit confused as I've got a feeling that the concepts of promises and futures are mixed up.
In my understanding a promise is a container that we could populate
value in a later point. And future is some sort of an asynchronous
operation that would complete in a different execution path.
In Scala we can obtain a result using the attached callbacks to future.
Where I'm lost is how promise has a future?
I have read about these concepts in Clojure too, assuming that promise and future have some generic common concept, but it seems like I was wrong.
A promise p completes the future returned by p.future. This future is
specific to the promise p. Depending on the implementation, it may be
the case that p.future eq p.
val p = promise[T]
val f = p.future
You can think of futures and promises as two different sides of a pipe.
On the promise side, data is pushed in, and on the future side, data can be pulled out.
And future is some sort of an asynchronous operation that would complete in a different execution path.
Actually, a future is a placeholder object for a value that may be become available at some point in time, asynchronously. It is not the asynchronous computation itself.
The fact that there is a future constructor called future that returns such a placeholder object and spawns an asynchronous computation that completes this placeholder object does not mean that the asynchronous computation is called a future. There are also other future constructors/factory methods.
But the point I do not get is how promise has a future?
To divide promises and futures into 2 separate interfaces was a design decision. You could have these two under the same interface Future, but that would then allow clients of futures to complete them instead of the intended completer of the future. This would cause unexpected errors, as there could be any number of contending completers.
E.g. for the asynchronous computation spawned by the future construct, it would no longer be clear whether it has to complete the promise, or if the client will do it.
Futures and promises are intended to constrain the flow of data in the program.
The idea is to have a future client that subscribes to the data to act on it once the data arrives.
The role of the promise client is to provide that data.
Mixing these two roles can lead to programs that are harder to understand or reason about.
You might also ask why the Promise trait does not extend Future. This is another design decision to discourage programmers from blindly passing Promises to clients where they should upcast the Promise to Future (this upcast is prone to be left out, whereas having to explicitly call future on the promise ensures you call it every time). In other words, by returning a promise you are giving the right to complete it to somebody else, and by returning the future you are giving the right to subscribe to it.
EDIT:
If you would like to learn more about futures, Chapter 4 in the Learning Concurrent Programming in Scala book describes them in detail. Disclaimer: I'm the author of the book.
The difference between the two is that futures are usually centered around the computation while promises are centered around data.
It seems your understanding matches this, but let me explain what I mean:
In both scala and clojure futures are (unless returned by some other function/method) created with some computation:
// scala
future { do_something() }
;; clojure
(future (do-something))
In both cases the "return-value" of the future can only be read (without blocking) only after the computation has terminated. When this is the case is typically outside the control of the programmer, as the computation gets executed in some thread (pool) in the background.
In contrast in both cases promises are an initially empty container, which can later be filled (exactly once):
// scala
val p = promise[Int]
...
p success 10 // or failure Exception()
;; clojure
(def p (promise))
(deliver p 10)
Once this is the case it can be read.
Reading the futures and promises is done through deref in clojure (and realized? can be used to check if deref will block). In scala reading is done through the methods provided by the Future trait. In order to read the result of a promise we thus have to obtain an object implementing Future, this is done by p.future. Now if the trait Future is implemented by a Promise, then p.future can return this and the two are equal. This is purely a implementation choice and does not change the concepts. So you were not wrong!
In any case Futures are mostly dealt with using callbacks.
At this point it might be worthwhile to reconsider the initial characterization of the two concepts:
Futures represent a computation that will produce a result at some point. Let's look at one possible implementation: We run the code in some thread(pool) and once its done, we arrange use the return value to fulfill a promise. So reading the result of the future is reading a promise; This is clojure's way of thinking (not necessarily of implementation).
On the other hand a promise represents a value that will be filled at some point. When it gets filled this means that some computation produced a result. So in a way this is like a future completing, so we should consume the value in the same way, using callbacks; This is scala's way of thinking.
Note that under the hood Future is implemented in terms of Promise and this Promise is completed with the body you passed to your Future:
def apply[T](body: =>T): Future[T] = impl.Future(body) //here I have omitted the implicit ExecutorContext
impl.Future is an implementation of Future trait:
def apply[T](body: =>T)(implicit executor: ExecutionContext): scala.concurrent.Future[T] =
{
val runnable = new PromiseCompletingRunnable(body)
executor.prepare.execute(runnable)
runnable.promise.future
}
Where PromiseCompletingRunnable looks like this:
class PromiseCompletingRunnable[T](body: => T) extends Runnable {
val promise = new Promise.DefaultPromise[T]()
override def run() = {
promise complete {
try Success(body) catch { case NonFatal(e) => Failure(e) }
}
} }
So you see even though they are seperate concepts that you can make use of independently in reality you can't get Future without using Promise.

What are advantages of a Twitter Future over a Scala Future?

I know a lot of reasons for Scala Future to be better. Are there any reasons to use Twitter Future instead? Except the fact Finagle uses it.
Disclaimer: I worked at Twitter on the Future implementation. A little bit of context, we started our own implementation before Scala had a "good" implementation of Future.
Here're the features of Twitter's Future:
Some method names are different and Twitter's Future has some new helper methods in the companion.
e.g. Just one example: Future.join(f1, f2) can work on heterogeneous Future types.
Future.join(
Future.value(new Object), Future.value(1)
).map {
case (o: Object, i: Int) => println(o, i)
}
o and i keep their types, they're not casted into the least common supertype Any.
A chain of onSuccess is guaranteed to be executed in order:
e.g.:
f.onSuccess {
println(1) // #1
} onSuccess {
println(2) // #2
}
#1 is guaranteed to be executed before #2
The Threading model is a little bit different. There's no notion of ExecutionContext, the Thread that set the value in a Promise (Mutable implementation of a Future) is the one executing all the computations in the future graph.
e.g.:
val f1 = new Promise[Int]
f1.map(_ * 2).map(_ + 1)
f1.setValue(2) // <- this thread also executes *2 and +1
There's a notion of interruption/cancellation. With Scala's Futures, the information only flows in one direction, with Twitter's Future, you can notify a producer of some information (not necessarily a cancellation). In practice, it's used in Finagle to propagate the cancellation of a RPC. Because Finagle also propagates the cancellation across the network and because Twitter has a huge fan out of requests, this actually saves lots of work.
class MyMessage extends Exception
val p = new Promise[Int]
p.setInterruptHandler {
case ex: MyMessage => println("Receive MyMessage")
}
val f = p.map(_ + 1).map(_ * 2)
f.raise(new MyMessage) // print "Receive MyMessage"
Until recently, Twitter's Future were the only one to implement efficient tail recursion (i.e. you can have a recursive function that call itself without blowing up you call stack). It has been implemented in Scala 2.11+ (I believe).
As far as I can tell the main difference that could go in favor of using Twitter's Future is that it can be cancelled, unlike scala's Future.
Also, there used to be some support for tracing the call chains (as you probably know plain stack traces are close to being useless when using Futures). In other words, you could take a Future and tell what chain of map/flatMap produced it. But the idea has been abandoned if I understand correctly.

Scala Test Async and Await methods

I have a service that makes use of the Scala Async library. I'm using this library primarily to time my database calls. The method that I want to test contains multiple calls to the database using the async await mechanism. A pseudo code of what I have is as below:
def myDbMethod() = async {
val firstCall = await(call the db and get the result)
val secondCall = await(all the db and get the result)
val thirdCall = await(all the db and get the result)
...
}
In my Scala test unit test, I have
Await.result(myDbMethod(), 10.seconds)
I was just trying to debug myMethod by running my unit test which would return with a test success even before getting into the secondCall. I mean I had breakpoints in all the 3 calls to the database, but the IntelliJ debugger would just exit out as soon as it finishes the first call to the database. Why is this? How can I test this behaviour using IntelliJ debugger?
I'm not sure that my answer would suffice your expectations, but it's a known issue. The problem is that async/await is quite a complicated macro, which does heavy transformations on the trees (you can check the output by enabling -Xprint:<phase_name_after_typer> flag). Unfortunately neither of existing IDEs (I'm working with Intellij and Ensime) can debug it, but I'm not familiar with their internals to explain why they can't in details.
From my experience I couldn't find any neat pros over the native for-comprehension, so you can stick with th native syntax or explicit flatmap calls, which is nicely debuggable.
This construct could be used for depdendant asynchronous calls.
async / await adds some sugar to make that easier, but to formalate that by hand you can do it like this:
def dbMethodDependant : Future[T] = for {
res1 <- firstCall
res2 <- secondCall(res2)
res3 <- thirdCall(res3)
} yield res3
Await.result(dbMethodDependant, forever)

A little help on understanding Scalaz Future and Task

I'm trying to understand the idea and purpose behind scalaz concurrent package, primarily Future and Task classes, but when using them in some application, it's now far from simple sequential analog, whereas scala.concurrent.Future, works more then better. Can any one share with his experience on writing concurrent/asynchronous application with scalaz, basically how to use it's async method correctly? As i understand from the sources async doesn't use a separate thread like the call to standard future, or fork/apply methods from scalaz works, so why it is called async then? Does it mean that in order to get real concurrency with scalaz i always have to call fork(now(...)) or apply?
I'm not a scalaz expert, but I'll try to help you a little bit. Let me try answer your questions one by one:
1) Can any one share with his experience on writing concurrent/asynchronous application with scalaz, basically how to use it's async method correctly?
Let's first take a look at async signature:
def async[A](listen: (A => Unit) => Unit): Future[A]
This could be a bit cryptic at first, so as always it's good idea to look at tests to understands possible use cases. In https://github.com/scalaz/scalaz/blob/scalaz-seven/tests/src/test/scala/scalaz/concurrent/FutureTest.scala
you can find the following code:
"when constructed from Future.async" ! prop{(n: Int) =>
def callback(call: Int => Unit): Unit = call(n)
Future.async(callback).run must_==
}
As we know from signature Future.async just construct new Future using function of signature (A => Unit) => Unit. What this really means is that Future.async takes as parameter function which for given callback makes all required computations and pass the result to that callback.
What is important to note it that Future.async does not run any computations on itself, it only prepare structure to run them later.
2) As i understand from the sources async doesn't use a separate thread like the call to standard future, or fork/apply methods from scalaz works, so why it is called async then?
You are correct. Only fork and apply seems to be running anything using threads, which is easy to notice looking at the signatures which contains implicit pool: ExecutorService. I cannot speak for the authors here, but I guess async is related to the callback. It means that rather than blocking on Future to get it result at the end you will use asynchronous callback.
3) Does it mean that in order to get real concurrency with scalaz i always have to call fork(now(...)) or apply?
From what I can say, yes. Just notice that when you are creating Future using syntax Future(x) you are using apply method here, so this is kind of default behavior (which is fine).
If you want to better understand design of Scalaz Futures I can recommend you reading "Functional Programming in Scala". I believe this book is written by main Scalaz contributors and chapter 7 discusses designing API for purely functional parallelism library. It's not exactly the same as Scalaz Future, but you can see many similarities.
You can also read wonderful Timothy Perrett blog post about Scalaz Task and Future which covers many not so obvious details.
async is used to adapt an async, callback-based API as a Future. It's called async because it's expected that it will be used with something that runs asynchronously, perhaps calling the callback from another thread somewhere further down the line. This is "real" concurrency, provided the API you're calling really uses it asynchronously (e.g. I use Future.async with the async parts of the AWS SDK like AmazonSimpleDBAsyncClient).
If you want "real" concurrency from the scalaz Task API directly you need to use things like fork or gatherUnordered, as many of the APIs default towards being safe/deterministic and restartable, with concurrency only when explicitly requested.
When composing Tasks with map and flatMap you can get a performance win by not using fork, see:
http://blog.higher-order.com/blog/2015/06/18/easy-performance-wins-with-scalaz/

Clarification needed about futures and promises in Scala

I am trying to get my head around Scala's promise and future constructs.
I've been reading Futures and Promises in Scala Documentation and am a bit confused as I've got a feeling that the concepts of promises and futures are mixed up.
In my understanding a promise is a container that we could populate
value in a later point. And future is some sort of an asynchronous
operation that would complete in a different execution path.
In Scala we can obtain a result using the attached callbacks to future.
Where I'm lost is how promise has a future?
I have read about these concepts in Clojure too, assuming that promise and future have some generic common concept, but it seems like I was wrong.
A promise p completes the future returned by p.future. This future is
specific to the promise p. Depending on the implementation, it may be
the case that p.future eq p.
val p = promise[T]
val f = p.future
You can think of futures and promises as two different sides of a pipe.
On the promise side, data is pushed in, and on the future side, data can be pulled out.
And future is some sort of an asynchronous operation that would complete in a different execution path.
Actually, a future is a placeholder object for a value that may be become available at some point in time, asynchronously. It is not the asynchronous computation itself.
The fact that there is a future constructor called future that returns such a placeholder object and spawns an asynchronous computation that completes this placeholder object does not mean that the asynchronous computation is called a future. There are also other future constructors/factory methods.
But the point I do not get is how promise has a future?
To divide promises and futures into 2 separate interfaces was a design decision. You could have these two under the same interface Future, but that would then allow clients of futures to complete them instead of the intended completer of the future. This would cause unexpected errors, as there could be any number of contending completers.
E.g. for the asynchronous computation spawned by the future construct, it would no longer be clear whether it has to complete the promise, or if the client will do it.
Futures and promises are intended to constrain the flow of data in the program.
The idea is to have a future client that subscribes to the data to act on it once the data arrives.
The role of the promise client is to provide that data.
Mixing these two roles can lead to programs that are harder to understand or reason about.
You might also ask why the Promise trait does not extend Future. This is another design decision to discourage programmers from blindly passing Promises to clients where they should upcast the Promise to Future (this upcast is prone to be left out, whereas having to explicitly call future on the promise ensures you call it every time). In other words, by returning a promise you are giving the right to complete it to somebody else, and by returning the future you are giving the right to subscribe to it.
EDIT:
If you would like to learn more about futures, Chapter 4 in the Learning Concurrent Programming in Scala book describes them in detail. Disclaimer: I'm the author of the book.
The difference between the two is that futures are usually centered around the computation while promises are centered around data.
It seems your understanding matches this, but let me explain what I mean:
In both scala and clojure futures are (unless returned by some other function/method) created with some computation:
// scala
future { do_something() }
;; clojure
(future (do-something))
In both cases the "return-value" of the future can only be read (without blocking) only after the computation has terminated. When this is the case is typically outside the control of the programmer, as the computation gets executed in some thread (pool) in the background.
In contrast in both cases promises are an initially empty container, which can later be filled (exactly once):
// scala
val p = promise[Int]
...
p success 10 // or failure Exception()
;; clojure
(def p (promise))
(deliver p 10)
Once this is the case it can be read.
Reading the futures and promises is done through deref in clojure (and realized? can be used to check if deref will block). In scala reading is done through the methods provided by the Future trait. In order to read the result of a promise we thus have to obtain an object implementing Future, this is done by p.future. Now if the trait Future is implemented by a Promise, then p.future can return this and the two are equal. This is purely a implementation choice and does not change the concepts. So you were not wrong!
In any case Futures are mostly dealt with using callbacks.
At this point it might be worthwhile to reconsider the initial characterization of the two concepts:
Futures represent a computation that will produce a result at some point. Let's look at one possible implementation: We run the code in some thread(pool) and once its done, we arrange use the return value to fulfill a promise. So reading the result of the future is reading a promise; This is clojure's way of thinking (not necessarily of implementation).
On the other hand a promise represents a value that will be filled at some point. When it gets filled this means that some computation produced a result. So in a way this is like a future completing, so we should consume the value in the same way, using callbacks; This is scala's way of thinking.
Note that under the hood Future is implemented in terms of Promise and this Promise is completed with the body you passed to your Future:
def apply[T](body: =>T): Future[T] = impl.Future(body) //here I have omitted the implicit ExecutorContext
impl.Future is an implementation of Future trait:
def apply[T](body: =>T)(implicit executor: ExecutionContext): scala.concurrent.Future[T] =
{
val runnable = new PromiseCompletingRunnable(body)
executor.prepare.execute(runnable)
runnable.promise.future
}
Where PromiseCompletingRunnable looks like this:
class PromiseCompletingRunnable[T](body: => T) extends Runnable {
val promise = new Promise.DefaultPromise[T]()
override def run() = {
promise complete {
try Success(body) catch { case NonFatal(e) => Failure(e) }
}
} }
So you see even though they are seperate concepts that you can make use of independently in reality you can't get Future without using Promise.