Let me clarify my question by example. This is a standard exponentiation algorithm written with tail recursion in Scala:
def power(x: Double, y: Int): Double = {
def sqr(z: Double): Double = z * z
def loop(xx: Double, yy: Int): Double =
if (yy == 0) xx
else if (yy % 2 == 0) sqr(loop(xx, yy / 2))
else loop(xx * x, yy - 1)
loop(1.0, y)
}
Here sqr method is used to produce the square of loop's result. It doesn't look like a good idea - to define a special function for such a simple operation. But, we can't write just loop(..) * loop(..) instead, since it doubles the calculations.
We also can write it with val and without sqr function:
def power(x: Double, y: Int): Double = {
def loop(xx: Double, yy: Int): Double =
if (yy == 0) xx
else if (yy % 2 == 0) { val s = loop(xx, yy / 2); s * s }
else loop(xx * x, yy - 1)
loop(1.0, y)
}
I can't say that it looks better then variant with sqr, since it uses state variable. The first case is more functional the second way is more Scala-friendly.
Anyway, my question is how to deal with cases when you need to postprocess function's result? Maybe Scala has some other ways to achieve that?
You are using the law that
x^(2n) = x^n * x^n
But this is the same as
x^n * x^n = (x*x)^n
Hence, to avoid squaring after recursion, the value in the case where y is even should be like displayed below in the code listing.
This way, tail-calling will be possible. Here is the full code (not knowing Scala, I hope I get the syntax right by analogy):
def power(x: Double, y: Int): Double = {
def loop(xx: Double, acc: Double, yy: Int): Double =
if (yy == 0) acc
else if (yy % 2 == 0) loop(xx*xx, acc, yy / 2)
else loop(xx, acc * xx, yy - 1)
loop(x, 1.0, y)
}
Here it is in a Haskell like language:
power2 x n = loop x 1 n
where
loop x a 0 = a
loop x a n = if odd n then loop x (a*x) (n-1)
else loop (x*x) a (n `quot` 2)
You could use a "forward pipe". I've got this idea from here: Cache an intermediate variable in an one-liner.
So
val s = loop(xx, yy / 2); s * s
could be rewritten to
loop(xx, yy / 2) |> (s => s * s)
using an implicit conversion like this
implicit class PipedObject[A](value: A) {
def |>[B](f: A => B): B = f(value)
}
As Petr has pointed out: Using an implicit value class
object PipedObjectContainer {
implicit class PipedObject[A](val value: A) extends AnyVal {
def |>[B](f: A => B): B = f(value)
}
}
to be used like this
import PipedObjectContainer._
loop(xx, yy / 2) |> (s => s * s)
is better, since it does not need a temporary instance (requires Scala >= 2.10).
In my comment I pointed out that your implementations can't be tail call optimised, because in the case where yy % 2 == 0, there is a recursive call that is not in tail position. So, for a large input, this can overflow the stack.
A general solution to this is to trampoline your function, replacing recursive calls with data which can be mapped over with "post-processing" such as sqr. The result is then computed by an interpreter, which steps through the return values, storing them on the heap rather than the stack.
The Scalaz library provides an implementation of the data types and interpreter.
import scalaz.Free.Trampoline, scalaz.Trampoline._
def sqr(z: Double): Double = z * z
def power(x: Double, y: Int): Double = {
def loop(xx: Double, yy: Int): Trampoline[Double] =
if (yy == 0)
done(xx)
else if (yy % 2 == 0)
suspend(loop(xx, yy / 2)) map sqr
else
suspend(loop(xx * x, yy - 1))
loop(1.0, y).run
}
There is a considerable performance hit for doing this, though. In this particular case, I would use Igno's solution to avoid the need to call sqr at all. But, the technique described above can be useful when you can't make such optimisations to your algorithm.
In this particular case
No need for utility functions
No need for obtuse piping / implicits
Only need a single standalone recursive call at end - to always give tail recursion
def power(x: Double, y: Int): Double =
if (y == 0) x
else {
val evenPower = y % 2 == 0
power(if (evenPower) x * x else x, if (evenPower) y / 2 else y - 1)
}
Related
I am trying to convert this recursive function into a tail recursive function
def sumOfFractions(n: Int): Double = {
require(n > 0, "Parameter n has to be greater than 0");
if (n==1)
1.0
else
1.0 / n + sumOfFractions(n - 1)
}
I thought that this solution would work but when it runs it just returns 1.0
def sumOfFractions(n:Int):Double = {
def inner(acc:Int, n:Int): Double={
if(n <= 1)1.0
else
{
inner(acc+(1/n),n-1)
}
}
inner(0,n)
}
I think this is because the accumulator is not being updated correctly but I don't understand why. The code is in Scala but an example in any language would be helpful.
You need the base case (n <= 1) to return the accumulator, not 1.0. You'll also run into problems because the accumulator is an Int instead of a Double, which means that + (1 / n) is just adding 0 (the result of dividing 1: Int by any n: Int greater than one).
You can fix this by changing acc's type and making the numerator of the reciprocal a literal double:
def sumOfFractions(n: Int):Double = {
def inner(acc: Double, n: Int): Double =
if (n <= 1) acc else inner(acc + (1.0 / n), n - 1)
inner(0, n)
}
This should work.
Correct your code
1) Return acc (accumulator) when n <= 1
2) Your acc should be Double type
3) Division should be floating point division
def sumOfFractions(n: Int): Double = {
def inner(acc: Double, n:Int): Double = if(n <= 1) acc
else inner(acc + (1.0 / n), n - 1)
inner(0,n)
}
Using foldLeft
def sumOfFractions(n: Int): Double =
(1 to n).foldLeft(0.0)((r, c) => r + (1.0 / c))
I'm new to Scala and have recently just been introduced to how functions work in the language.
I'm trying to calculate phi using a fibonacci function. The two fibonacci functions were easy enough to write (one recursive and one tail-recursive), but I am at a complete loss as to how to proceed.
From my understanding the function golden will use the result of the function fib as a parameter, and then integer n to determine the precision. However despite researching for some time now I'm at a complete loss as to how to accomplish this.
I need to use individual F1 and F2 parameters to calculate phi surely? So should I add more variables to my fib function to do so and calculate during the fibonacci calculation?
That aside, how do I enforce precision to x amount of digits?
Below is the screenshot of what I have so far, I'd greatly appreciate any help you can offer. I'm really struggling to even begin to move forward on this.
http://i.imgur.com/Oms9IhK.png
// Fibonacci Sequence 1
def fib(n: Int): Int = {
while(n-1 > 0){
return fib(n - 1) + fib(n - 2)
}
return n
}
fib(40)
assert(fib(40) == 102334155, "Wrong result for fib1(40)!")
// Fibonacci Sequence 2
def fib2(n: Int): Int = {
def tailrec(f1: Int, f2: Int, n: Int): Int = {
if(n != 1) {
tailrec(f2, f2 + f1, n-1)
}
else {
return f2
}
}
return tailrec(0, 1, n)
}
fib2(40)
assert(fib2(40) == 102334155, "Wrong result for fib1(40)!")
// Write a function that returns the φ value with at least n digits of precision
def golden(fib: Int => Int, n: Int): Double = {
return (fib(n) / fib(n+1))
}
golden(fib(_), 40)
def golden(fib: Int => Int, n: Int): Double = {
def goldenCal(n: Int): Double = fib(n + 1).toDouble / fib(n).toDouble
def isGoodEn(n: Int, precision: Int): Boolean = Math.abs(goldenCal(n) - goldenCal(n + 1)) < (Math.pow(10, -(precision + 1)))
def goldenIter(n: Int, precision: Int): Double = {
if (isGoodEn(n, precision))
goldenCal(n + 1)
else
//calculate the golden number using fib1
goldenIter(n + 1, precision)
}
goldenIter(n, 3)
}
def golden1(n:Int):Double = golden(fib1,n)
golden1(9)
def golden2(n:Int):Double = golden(fib1,n)
golden1(5)
While working through the coursera class on scala I ran into the code below (from another question asked here by Sudipta Deb.)
package src.com.sudipta.week2.coursera
import scala.math.abs
import scala.annotation.tailrec
object FixedPoint {
println("Welcome to the Scala worksheet") //> Welcome to the Scala worksheet
val tolerance = 0.0001 //> tolerance : Double = 1.0E-4
def isCloseEnough(x: Double, y: Double): Boolean = {
abs((x - y) / x) / x < tolerance
} //> isCloseEnough: (x: Double, y: Double)Boolean
def fixedPoint(f: Double => Double)(firstGuess: Double): Double = {
#tailrec
def iterate(guess: Double): Double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)
}
iterate(firstGuess)
} //> fixedPoint: (f: Double => Double)(firstGuess: Double)Double
def myFixedPoint = fixedPoint(x => 1 + x / 2)(1)//> myFixedPoint: => Double
myFixedPoint //> res0: Double = 1.999755859375
def squareRoot(x: Double) = fixedPoint(y => (y + x / y) / 2)(1)
//> squareRoot: (x: Double)Double
squareRoot(2) //> res1: Double = 1.4142135623746899
def calculateAverate(f: Double => Double)(x: Double) = (x + f(x)) / 2
//> calculateAverate: (f: Double => Double)(x: Double)Double
def myNewSquareRoot(x: Double): Double = fixedPoint(calculateAverate(y => x / y))(1)
//> myNewSquareRoot: (x: Double)Double
myNewSquareRoot(2) //> res2: Double = 1.4142135623746899
}
My puzzlement concerns the isCloseEnough function.
I understand that for guesses which are large numbers, the difference between a guess and
the large value that the function returns could potentially be very big all the time, so we may never converge.
Conversely, if the guess is small, and if what f(x) produces is small then we will likely converge too quickly.
So dividing through by the guess like this:
def isCloseEnough(x: Double, y: Double): Boolean = {
abs((x - y) / x) / x < tolerance
}
makes perfect sense. (here is 'x' is the guess, and y is f_of_x.)
My question is why do why does the solution given divide by the guess TWICE ?
Wouldn't that undo all the benefits of dividing through by the guess the first time ?
As an example... let's say that my current guess and the value actually returned by the
function given my current x is as shown below:
import math.abs
var guess=.0000008f
var f_of_x=.00000079999f
And lets' say my tolerance is
var tolerance=.0001
These numbers look pretty close, and indeed, if i divide through by x ONCE, i see that the result
is less than my tolerance.
( abs(guess - f_of_x) / guess)
res3: Float = 1.2505552E-5
However, if i divide through by x TWICE the result is much greater than my tolerance, which would suggest
we need to keep iterating.. which seems wrong since guess and observed f(x) are so close.
scala> ( abs(guess - f_of_x) / guess) / guess
res11: Float = 15.632331
Thanks in advance for any help you can provide.
You are completely right, it does not make sense. Further, the second division is outside of the absolute value rendering the inequality true for any negative x.
Perhaps someone got confused with testing for quadratic convergence.
please find below a piece of code from Coursera online course (lecture 2.3) on functional programming in Scala.
package week2
import math.abs
object lecture2_3_next {
def fixedPoint(f: Double => Double)(firstGuess: Double): Double = {
val tolerance = 0.0001
def isCloseEnough(x: Double, y: Double): Boolean = abs((x - y) / x) / x < tolerance
def iterate(guess: Double): Double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)
}
iterate(firstGuess)
}
def averageDamp(f: Double => Double)(x: Double): Double = (x + f(x)) / 2
def sqrt(x: Double): Double = fixedPoint(averageDamp(y => x / y))(1)
sqrt(2)
}
A few points blocked me while I'm trying to understand this piece of code.
I'd like your help to understanding this code.
The 2 points that annoying me are :
- when you call averageDamp, there are 2 parameters 'x' and 'y' in the function passed (eg. averageDamp(y => x / y)) but you never specify the 'y' parameter in the definition of the averageDamp function (eg. def averageDamp(f: Double => Double)(x: Double): Double = (x + f(x)) / 2). Where and how do the scala compiler evaluate the 'y' parameter.
- second point may be related to the first, I don't know in fact. When I call the averageDamp function, I pass only the function 'f' parameter (eg. y => x / y) but I don't pass the second parameter of the function which is 'x' (eg. (x: Double) second parameter). How the scala compiler is evaluating the 'x' parameter in this case to render the result of the averageDamp call.
I think I missed something about the evaluation or substitution model of scala and functional programming.
Thank's for your help and happy new year !
Hervé
1) You don't pass an x and an y parameter as f, you pass a function. The function is defined as y => x / y, where y is just a placeholder for the argument of this function, while x is a fixed value in this context, as it is given as argument for the sqrt method (in the example x is 2). Instead of the fancy lambda-syntax, you could write as well
def sqrt(x: Double): Double = fixedPoint(averageDamp(
new Function1[Double,Double] {
def apply(y:Double):Double = x / y
}
))(1)
Nothing magic about this, just an abbreviation.
2) When you have a second parameter list, and don't use it when calling the method, you do something called "currying", and you get back a partial function. Consider
def add(x:Int)(y:Int) = x + y
If you call it as add(2)(3), everything is "normal", and you get back 5. But if you call add(2), the second argument is still "missing", and you get back a function expecting this missing second argument, so you have something like y => 2 + y
The x is not a parameter of the (anonymous) function, it is a parameter of the function sqrt. For the anonymous function it is a bound closure.
To make it more obvious, let's rewrite it and use a named instead of an anonymous function:
def sqrt(x: Double): Double = fixedPoint(averageDamp(y => x / y))(1)
will can be rewritten as this:
def sqrt(x: Double): Double = {
def funcForSqrt(y: Double) : Double = x / y // Note that x is not a parameter of funcForSqrt
// Use the function fundForSqrt as a parameter of averageDamp
fixedPoint(averageDamp(funcForSqrt))(1)
}
Suppose I would like to calculate Pi with Monte Carlo simulation as an exercise.
I am writing a function, which picks a point in a square (0, 1), (1, 0) at random and tests if the point is inside the circle.
import scala.math._
import scala.util.Random
def circleTest() = {
val (x, y) = (Random.nextDouble, Random.nextDouble)
sqrt(x*x + y*y) <= 1
}
Then I am writing a function, which takes as arguments the test function and the number of trials and returns the fraction of the trials in which the test was found to be true.
def monteCarlo(trials: Int, test: () => Boolean) =
(1 to trials).map(_ => if (test()) 1 else 0).sum * 1.0 / trials
... and I can calculate Pi
monteCarlo(100000, circleTest) * 4
Now I wonder if monteCarlo function can be improved. How would you write monteCarlo efficient and readable ?
For example, since the number of trials is large is it worth using a view or iterator instead of Range(1, trials) and reduce instead of map and sum ?
It's worth noting that Random.nextDouble is side-effecting—when you call it it changes the state of the random number generator. This may not be a concern to you, but since there are already five answers here I figure it won't hurt anything to add one that's purely functional.
First you'll need a random number generation monad implementation. Luckily NICTA provides a really nice one that's integrated with Scalaz. You can use it like this:
import com.nicta.rng._, scalaz._, Scalaz._
val pointInUnitSquare = Rng.choosedouble(0.0, 1.0) zip Rng.choosedouble(0.0, 1.0)
val insideCircle = pointInUnitSquare.map { case (x, y) => x * x + y * y <= 1 }
def mcPi(trials: Int): Rng[Double] =
EphemeralStream.range(0, trials).foldLeftM(0) {
case (acc, _) => insideCircle.map(_.fold(1, 0) + acc)
}.map(_ / trials.toDouble * 4)
And then:
scala> val choosePi = mcPi(10000000)
choosePi: com.nicta.rng.Rng[Double] = com.nicta.rng.Rng$$anon$3#16dd554f
Nothing's been computed yet—we've just built up a computation that will generate our value randomly when executed. Let's just execute it on the spot in the IO monad for the sake of convenience:
scala> choosePi.run.unsafePerformIO
res0: Double = 3.1415628
This won't be the most performant solution, but it's good enough that it may not be a problem for many applications, and the referential transparency may be worth it.
Stream based version, for another alternative. I think this is quite clear.
def monteCarlo(trials: Int, test: () => Boolean) =
Stream
.continually(if (test()) 1.0 else 0.0)
.take(trials)
.sum / trials
(the sum isn't specialised for streams but the implementation (in TraversableOnce) just calls foldLeft that is specialised and "allows GC to collect along the way." So the .sum won't force the stream to be evaluated and so won't keep all the trials in memory at once)
I see no problem with the following recursive version:
def monteCarlo(trials: Int, test: () => Boolean) = {
def bool2double(b: Boolean) = if (b) 1.0d else 0.0d
#scala.annotation.tailrec
def recurse(n: Int, sum: Double): Double =
if (n <= 0) sum / trials
else recurse(n - 1, sum + bool2double(test()))
recurse(trials, 0.0d)
}
And a foldLeft version, too:
def monteCarloFold(trials: Int, test: () => Boolean) =
(1 to trials).foldLeft(0.0d)((s,i) => s + (if (test()) 1.0d else 0.0d)) / trials
This is more memory efficient than the map version in the question.
Using tail recursion might be an idea:
def recMonteCarlo(trials: Int, currentSum: Double, test:() => Boolean):Double = trials match {
case 0 => currentSum
case x =>
val nextSum = currentSum + (if (test()) 1.0 else 0.0)
recMonteCarlo(trials-1, nextSum, test)
def monteCarlo(trials: Int, test:() => Boolean) = {
val monteSum = recMonteCarlo(trials, 0, test)
monteSum / trials
}
Using aggregate on a parallel collection, like this,
def monteCarlo(trials: Int, test: () => Boolean) = {
val pr = (1 to trials).par
val s = pr.aggregate(0)( (a,_) => a + (if (test()) 1 else 0), _ + _)
s * 4.0 / trials
}
where partial results are summed up in parallel with other test calculations.