I need to do a pattern match on Classes. The Problem is, that I have some Problems matching a Long.
I need to handle scala.Long and java.lang.Long in the same way, but why do I need to declare them both in cases?
Here is an example:
def test(typ: Class[_]) {
typ match {
case q if q == classOf[Long] => println("scala long...")
}
}
val scalaLongField: java.reflect.Field = ......
val javaLongField: java.reflect.Field = ......
test(scalaLongField.getType) // prints "scala long..."
test(javaLongField.getType) // scala.MatchError: class java.lang.Long (of class java.lang.Class)
Is there a way to handle them the same without having an instance but just the class?
The reason is that java.lang.Long and Long are different classes. In Java, there is a difference between java.lang.Long.class and Long.TYPE. Similarly, in Scala, classOf[Long] and classOf[java.lang.Long] are different.
If you want to pattern match on classes, you can create helper unapply methods for that:
object ScalaLong {
// Internal helper:
private def matchClass[T](c: Class[_], as: Class[T]): Option[Class[T]] =
if (as.isAssignableFrom(c)) Some(as)
else None;
// Matches wrapped Long classes.
object LongObject {
def unapply(c: Class[_]): Option[Class[java.lang.Long]] =
matchClass(c, classOf[java.lang.Long]);
}
// Matches primitive long classes.
object LongPrim {
def unapply(c: Class[_]): Option[Class[Long]] =
matchClass(c, classOf[Long]);
}
// -- Test:
def check(clz: Class[_]) =
clz match {
case LongPrim(c) => println("Long primitive: " + c);
case LongObject(c) => println("Long object: " + c);
case _ => println("Other: " + clz);
}
class Example {
val l1: scala.Long = 1L;
val l2: java.lang.Long = 1L;
val l3: java.lang.Integer = 1;
}
def main(argv: Array[String]) {
for(name <- Seq("l1", "l2", "l3"))
check(classOf[Example].getMethod(name).getReturnType());
}
}
Generally, you'll have to treat classOf[Long] and classOf[java.lang.Long] separately. Perhaps, if you describe what you need to do with them, we can find a better solution for your specific task.
It should work straight away:
object LongTest {
def test(value: Any): Boolean = value match {
case l: Long => true
case _ => false
}
def run() {
println(test(1L))
println(test(new java.lang.Long(1L)))
}
}
LongTest.run() // true and true
It wasn't obvious to me that you want to match classes instead of instance. I'm not sure I understand what you actually want. Like this?
object LongTest {
def test(clazz: Class[_]): Boolean =
clazz == classOf[Long] || clazz == classOf[java.lang.Long]
def run() {
println(test(1L.getClass))
println(test(new java.lang.Long(1L).getClass))
}
}
LongTest.run() // true and true
Or as a pattern match:
def test(clazz: Class[_]): Boolean = clazz match {
case q if q == classOf[Long] || q == classOf[java.lang.Long] => true
case _ => false
}
Related
I learned about extractors from the stairway book:
object Twice {
def apply(x: Int) = x * 2
def unapply(x: Int) = if(x % 2 == 0) Some(x / 2) else None
}
// outside pattern mathcing, Twice.apply(21) is called
val x = Twice(21)
x match {
// inside pattern matching, Twice.unapply(x) is called,
// the result Some(21) is matched against y,
// y gets the value 21
case Twice(y) => println(x + " is twice " + y)
case _ => println(x + " is odd.")
}
That's pretty straight forward. But today I read from some book on Play framework this code:
trait RequestExtractors extends AcceptExtractors {
//Convenient extractor allowing to apply two extractors.
object & {
def unapply(request: RequestHeader): Option[(RequestHeader, RequestHeader)] = Some((request, request))
}
}
//Define a set of extractors allowing to pattern match on the Accept HTTP header of a request
trait AcceptExtractors {
//Common extractors to check if a request accepts JSON, Html, etc.
object Accepts {
import play.api.http.MimeTypes
val Json = Accepting(MimeTypes.JSON)
val Html = Accepting(MimeTypes.HTML)
val Xml = Accepting(MimeTypes.XML)
val JavaScript = Accepting(MimeTypes.JAVASCRIPT)
}
}
//Convenient class to generate extractors checking if a given mime type matches the Accept header of a request.
case class Accepting(val mimeType: String) {
def unapply(request: RequestHeader): Boolean = request.accepts(mimeType)
def unapply(mediaRange: play.api.http.MediaRange): Boolean = mediaRange.accepts(mimeType)
}
def fooBar = Action {
implicit request =>
val xmlResponse: Node = <metadata>
<company>TinySensors</company>
<batch>md2907</batch>
</metadata>
val jsonResponse = Json.obj("metadata" -> Json.arr(
Json.obj("company" -> "TinySensors"),
Json.obj("batch" -> "md2907"))
)
render {
case Accepts.Xml() => Ok(xmlResponse)
case Accepts.Json() & Accepts.JavaScript() => Ok(jsonResponse)
}
}
How does the extractor work when the unapply function returns Boolean instead of Option? How do &, Accepts.Xml work here?
I can really tell you about the play framework, but if used in pattern matching an extractor returning a boolean signifies if the pattern matches. Thus if an extractor return true it means that the pattern matches the value. This is a good link about extractors and also covers this case:
http://danielwestheide.com/blog/2012/11/21/the-neophytes-guide-to-scala-part-1-extractors.html
Generally you use extractors for two use cases:
1) Destructing an object, which means returning one or more values which represent the state of given object
2) You can also use extractors to turn an object into an object of another kind during pattern matching. I made a small example for this case:
class Division(val number: Int) {
}
object Division {
def unapply(divider: Division): Boolean = divider.number != 0
def unapply(divider: Int): Option[Division] = if (divider != 0) Some(new Division(divider)) else None
}
val divident = 15
val divider = 5
val y = divider match {
case Division(notZero) => divident / notZero.number //notZero is of type Division
case _ => throw new IllegalArgumentException()
}
Ok, I found a way to figure this out by making a minimal example:
object Unapply {
case class DividedBy(val number: Int) {
def unapply(divider: Int): Boolean = number % divider == 0
def unapply(divider: Double): Boolean = number % divider.toInt == 0
}
val x = DividedBy(15)
// y should be true
val y = 5 match {
// case DividedBy(15)() => true
case x() => true
case _ => false
}
}
The weird thing is that when you use DividedBy(15)() (commented out above), the code won't compile.
Update:
object Unapply {
case class Division(val number: Int) {
// def unapply(divider: Int): Boolean = number % divider == 0
def unapply(divider: Int): Option[(Int, Int)] = if (number % divider == 0) Some(number/divider, 0) else None
def unapply(divider: Double): Boolean = number % divider.toInt == 0
}
object Division {
def apply(number: Int) = new Division(number)
}
val divisionOf15 = Division(15)
// y should be true
val y = 5 match {
// case DividedBy(15)() => true
case divisionOf15(z, w) => s"$z, $w"
case _ => s"Not divisible"
}
val z = 5.0 match {
case divisionOf15() => "Divisible"
case _ => "Not divisible"
}
}
After some reading some old notes on the stairway book now I have a clearer understanding of this. The case class is a extractor factory.
I thought the following would be the most concise and correct form to collect elements of a collection which satisfy a given type:
def typeOnly[A](seq: Seq[Any])(implicit tag: reflect.ClassTag[A]): Seq[A] =
seq.collect {
case tag(t) => t
}
But this only works for AnyRef types, not primitives:
typeOnly[String](List(1, 2.3, "foo")) // ok. List(foo)
typeOnly[Double](List(1, 2.3, "foo")) // fail. List()
Obviously the direct form works:
List(1, 2.3, "foo") collect { case d: Double => d } // ok. List(2.3)
So there must be a (simple!) way to fix the above method.
It's boxed in the example, right?
scala> typeOnly[java.lang.Double](vs)
res1: Seq[Double] = List(2.3)
Update: The oracle was suitably cryptic: "boxing is supposed to be invisible, plus or minus". I don't know if this case is plus or minus.
My sense is that it's a bug, because otherwise it's all an empty charade.
More Delphic demurring: "I don't know what the given example is expected to do." Notice that it is not specified, expected by whom.
This is a useful exercise in asking who knows about boxedness, and what are the boxes? It's as though the compiler were a magician working hard to conceal a wire which keeps a playing card suspended in midair, even though everyone watching already knows there has to be a wire.
scala> def f[A](s: Seq[Any])(implicit t: ClassTag[A]) = s collect {
| case v if t.runtimeClass.isPrimitive &&
| ScalaRunTime.isAnyVal(v) &&
| v.getClass.getField("TYPE").get(null) == t.runtimeClass =>
| v.asInstanceOf[A]
| case t(x) => x
| }
f: [A](s: Seq[Any])(implicit t: scala.reflect.ClassTag[A])Seq[A]
scala> f[Double](List(1,'a',(),"hi",2.3,4,3.14,(),'b'))
res45: Seq[Double] = List(2.3, 3.14)
ScalaRunTime is not supported API -- the call to isAnyVal is just a match on the types; one could also just check that the "TYPE" field exists or
Try(v.getClass.getField("TYPE").get(null)).map(_ == t.runtimeClass).getOrElse(false)
But to get back to a nice one-liner, you can roll your own ClassTag to handle the specially-cased extractions.
Version for 2.11. This may not be bleeding edge, but it's the recently cauterized edge.
object Test extends App {
implicit class Printable(val s: Any) extends AnyVal {
def print = Console println s.toString
}
import scala.reflect.{ ClassTag, classTag }
import scala.runtime.ScalaRunTime
case class Foo(s: String)
val vs = List(1,'a',(),"hi",2.3,4,Foo("big"),3.14,Foo("small"),(),null,'b',null)
class MyTag[A](val t: ClassTag[A]) extends ClassTag[A] {
override def runtimeClass = t.runtimeClass
/*
override def unapply(x: Any): Option[A] = (
if (t.runtimeClass.isPrimitive && (ScalaRunTime isAnyVal x) &&
x.getClass.getField("TYPE").get(null) == t.runtimeClass)
Some(x.asInstanceOf[A])
else super.unapply(x)
)
*/
override def unapply(x: Any): Option[A] = (
if (t.runtimeClass.isPrimitive) {
val ok = x match {
case _: java.lang.Integer => runtimeClass == java.lang.Integer.TYPE
//case _: java.lang.Double => runtimeClass == java.lang.Double.TYPE
case _: java.lang.Double => t == ClassTag.Double // equivalent
case _: java.lang.Long => runtimeClass == java.lang.Long.TYPE
case _: java.lang.Character => runtimeClass == java.lang.Character.TYPE
case _: java.lang.Float => runtimeClass == java.lang.Float.TYPE
case _: java.lang.Byte => runtimeClass == java.lang.Byte.TYPE
case _: java.lang.Short => runtimeClass == java.lang.Short.TYPE
case _: java.lang.Boolean => runtimeClass == java.lang.Boolean.TYPE
case _: Unit => runtimeClass == java.lang.Void.TYPE
case _ => false // super.unapply(x).isDefined
}
if (ok) Some(x.asInstanceOf[A]) else None
} else if (x == null) { // let them collect nulls, for example
if (t == ClassTag.Null) Some(null.asInstanceOf[A]) else None
} else super.unapply(x)
)
}
implicit def mytag[A](implicit t: ClassTag[A]): MyTag[A] = new MyTag(t)
// the one-liner
def g[A](s: Seq[Any])(implicit t: ClassTag[A]) = s collect { case t(x) => x }
// this version loses the "null extraction", if that's a legitimate concept
//def g[A](s: Seq[Any])(implicit t: ClassTag[A]) = s collect { case x: A => x }
g[Double](vs).print
g[Int](vs).print
g[Unit](vs).print
g[String](vs).print
g[Foo](vs).print
g[Null](vs).print
}
For 2.10.x, an extra line of boilerplate because implicit resolution is -- well, we won't say it's broken, we'll just say it doesn't work.
// simplified version for 2.10.x
object Test extends App {
implicit class Printable(val s: Any) extends AnyVal {
def print = Console println s.toString
}
case class Foo(s: String)
val vs = List(1,'a',(),"hi",2.3,4,Foo("big"),3.14,Foo("small"),(),null,'b',null)
import scala.reflect.{ ClassTag, classTag }
import scala.runtime.ScalaRunTime
// is a ClassTag for implicit use in case x: A
class MyTag[A](val t: ClassTag[A]) extends ClassTag[A] {
override def runtimeClass = t.runtimeClass
override def unapply(x: Any): Option[A] = (
if (t.runtimeClass.isPrimitive && (ScalaRunTime isAnyVal x) &&
(x.getClass getField "TYPE" get null) == t.runtimeClass)
Some(x.asInstanceOf[A])
else t unapply x
)
}
// point of the exercise in implicits is the type pattern.
// there is no need to neutralize the incoming implicit by shadowing.
def g[A](s: Seq[Any])(implicit t: ClassTag[A]) = {
implicit val u = new MyTag(t) // preferred as more specific
s collect { case x: A => x }
}
s"Doubles? ${g[Double](vs)}".print
s"Ints? ${g[Int](vs)}".print
s"Units? ${g[Unit](vs)}".print
s"Strings? ${g[String](vs)}".print
s"Foos? ${g[Foo](vs)}".print
}
Promoting a comment:
#WilfredSpringer Someone heard you. SI-6967
I have the following class:
abstract class IRDMessage extends Ordered[IRDMessage] {
val messageType: MessageType.Type
val timestamp: DateTime
val content: AnyRef
def compare(that: IRDMessage): Int = {
val res = timestamp compareTo that.timestamp
res
}
override def equals(obj: Any): Boolean = obj match{
case message: IRDMessage => compareTo(message) == 0
case _ => false
}
}
I have a couple of concrete implementations as well. However, when I try to say a == b of any subtype of IRDMessage the equals method does not get called and it simply compares references (default equals implementation). Any ideas what might be causing this?
The subclasses are simple case classes btw.
This does actually work given the following simplified example:
object MessageTest {
def main(args: Array[String]) {
val m1 = MessageImpl("foo")
val m2 = MessageImpl("bar")
m1 == m2
}
}
abstract class IRDMessage extends Ordered[IRDMessage] {
val content: AnyRef
override def equals(obj: Any): Boolean = {
println("in here")
obj match{
case message: IRDMessage => compareTo(message) == 0
case _ => false
}
}
}
case class MessageImpl(content:String) extends IRDMessage{
override def compare(that:IRDMessage) = 0
}
Can you post a little more code, specifically one of your sample case classes? I noticed if I defined the case class like so:
case class MessageImpl extends IRDMessage{
var content = "foo"
override def compare(that:IRDMessage) = 0
}
It does not work as expected.
I don't really get this little thingy. I have an abstract class Box
with several sub-classes for different types. For example
abstract class Box
class StringBox(val sValue : String) extends Box
The apply method in the companion object for Box is simple:
object Box{
def apply(s: String) = new StringBox(s)
def apply(b: Boolean) = new BooleanBox(b)
def apply(d: Double) = new DoubleBox(d)
}
so I can write
val sb = Box("StringBox)
Okay, writing unapply makes some trouble. My first idea was to use pattern matching on the type, like this this:
def unapply(b: Box) = b match {
case sb: StringBox => Some(sb.sValue)
case bb: BooleanBox => Some(bb.bValue)
case db: DoubleBox => Some(db.dValue)
case _ => None
}
Which simply doesn't work because of type erasures.
Second attempt was a generic Box[T] with type T and an abstract type member re-defined
in each sub classes. For instance:
abstract class Box[T] {def value : T}
class StringBox(val sValue : String) extends Box[String] {
override def value : String = sValue
}
Consequently, I can re write my unapply as:
def unapply[T](b: Box[T]) = b match {
case sb: Box[String] => Some(sb.value)
case bb: Box[Boolean] => Some(bb.value)
case db: Box[Double] => Some(db.value)
case _ => None
Unfortunately, this doesn't work either. So I guess the explicit type reference
in Box[String] gets erased as well so I need to use a type manifest instead.
Maybe something like:
def unapply[T](b: Box[_])(implicit target: Manifest[T]): Option[T] = {
if(b.value == target) Some(b.value.asInstanceOf[T])
else None
}
This code compiles (2.10) but still does not the desired implicit conversion.
Why?
Simple question, is there a way to do value extraction without using reflection
or a manifest?
What really boggles me is the question if there is a simple(r) way to combine
polymorphism and pattern matching? If not, are there other ways in Scala to
accomplish a similar effect?
Any idea or suggestions?
Thank you very much.
Prolly you can try this.. :)
abstract class Box[T](val v: T)
object Box {
def apply(s: String) = new StringBox(s)
def apply(b: Boolean) = new BooleanBox(b)
def apply(d: Double) = new DoubleBox(d)
}
class StringBox(sValue: String) extends Box(sValue)
object StringBox {
def unapply(b: StringBox) = Some(b.v)
}
class BooleanBox(sValue: Boolean) extends Box(sValue)
object BooleanBox {
def unapply(b: BooleanBox) = Some(b.v)
}
class DoubleBox(sValue: Double) extends Box(sValue)
object DoubleBox {
def unapply(b: DoubleBox) = Some(b.v)
}
You can use it as --
def useCase[T](box: Box[T]) = box match {
case StringBox("StringBoxxx") => "I found the StringBox!"
case StringBox(s) => "Some other StringBox"
case BooleanBox(b) => {
if (b) "Omg! its true BooleanBox !"
else "its false BooleanBox :("
}
case DoubleBox(x) => {
if (x > 3.14) "DoubleBox greater than pie !"
else if (x == 3.14) "DoubleBox with a pie !"
else "DoubleBox less than a pie !"
}
case _ => "What is it yaa ?"
}
useCase(Box("StringBoxxx")) //> res0: String = I found the StringBox!
useCase(Box("Whatever !")) //> res1: String = Some other StringBox
useCase(Box(true)) //> res2: String = Omg! its true BooleanBox !
useCase(Box(false)) //> res3: String = its false BooleanBox :(
useCase(Box(4)) //> res4: String = DoubleBox greater than pie !
useCase(Box(3.14)) //> res5: String = DoubleBox with a pie !
useCase(Box(2)) //> res6: String = DoubleBox less than a pie !
I have been searching the forum and Google for answers to type erasure issues for Scala. However, I cannot find anything that answers my question.
I struggling with pattern matching on objects that match the type parameter of ParamClass. I need to pattern match on the type of incoming objects to the bar method. I have seen solutions such as
bar[X](a : X)(implicit m : Manifest[X])
which would solve my problem, but I cannot use this as the bar method is an overridden method. (Actually is the receive partial function in the Akka actor framework). The code is given below and should be self explanatory:
class ParamClass[A : Manifest] {
def bar(x : Any) = x match {
case a: A => println("Found A: " + a)
case _ => println("No match: " + x)
}
}
object ErasureIssue {
def main(args: Array[String]) {
val clz = new ParamClass[Int]
clz.bar("faf")
clz.bar(2.3)
clz.bar(12) // this should match, but does not
}
}
ErasureIssue.main(null)
Any help on solving this issue is greatly appreciated. I'm using Scala 2.9.1, BTW.
-J
In theory you could check in bar like this: x.getClass == implicitly[Manifest[A]].erasure, but that fails for primitive types such as Int for which the manifest correctly erases to Int, but bar is called with boxed type java.lang.Integer ... :-(
You could require A to be an AnyRef in order to get the boxed manifest:
class ParamClass[A <: AnyRef : Manifest] {
def bar(x : Any) = x match {
case _ if x.getClass == implicitly[Manifest[A]].erasure =>
println("Found A: " + x.asInstanceOf[A])
case _ => println("No match: " + x)
}
}
object ErasureIssue {
def main(args: Array[String]) {
val clz = new ParamClass[Integer] // not pretty...
clz.bar("faf")
clz.bar(2.3)
clz.bar(12) // ok
}
}
ErasureIssue.main(null)
Given your requirement to construct primitive arrays, you could store directly the boxed class, independently of the unboxed manifest:
object ParamClass {
def apply[A](implicit mf: Manifest[A]) = {
val clazz = mf match {
case Manifest.Int => classOf[java.lang.Integer] // boxed!
case Manifest.Boolean => classOf[java.lang.Boolean]
case _ => mf.erasure
}
new ParamClass[A](clazz)
}
}
class ParamClass[A] private[ParamClass](clazz: Class[_])(implicit mf: Manifest[A]) {
def bar(x : Any) = x match {
case _ if x.getClass == clazz =>
println("Found A: " + x.asInstanceOf[A])
case _ => println("No match: " + x)
}
def newArray(size: Int) = new Array[A](size)
override def toString = "ParamClass[" + mf + "]"
}
val pi = ParamClass[Int]
pi.bar("faf")
pi.bar(12)
pi.newArray(4)
val ps = ParamClass[String]
ps.bar("faf")
ps.bar(12)
ps.newArray(4)
If you try to compile with -unchecked, you immediately get the warning.
test.scala:3: warning: abstract type A in type pattern A is unchecked
since it is eliminated by erasure
case a: A => println("Found A: " + a)
If you now want to go deeper, you can use scalac -print
[[syntax trees at end of cleanup]]// Scala source: test.scala
package <empty> {
class ParamClass extends java.lang.Object with ScalaObject {
def bar(x: java.lang.Object): Unit = {
<synthetic> val temp1: java.lang.Object = x;
if (temp1.$isInstanceOf[java.lang.Object]())
{
scala.this.Predef.println("Found A: ".+(temp1))
}
else
{
scala.this.Predef.println("No match: ".+(x))
}
};
def this(implicit evidence$1: scala.reflect.Manifest): ParamClass = {
ParamClass.super.this();
()
}
};
final object ErasureIssue extends java.lang.Object with ScalaObject {
def main(args: Array[java.lang.String]): Unit = {
val clz: ParamClass = new ParamClass(reflect.this.Manifest.Int());
clz.bar("faf");
clz.bar(scala.Double.box(2.3));
clz.bar(scala.Int.box(12))
};
def this(): object ErasureIssue = {
ErasureIssue.super.this();
()
}
}
}
Now seeing this code you can see that your A has turned into a java.lang.Object, which cause all the parameters to match the clause