Thanks to the answers to my previous question, I was able to create a function macro such that it returns a Map that maps each field name to its value of a class, e.g.
...
trait Model
case class User (name: String, age: Int, posts: List[String]) extends Model {
val numPosts: Int = posts.length
...
def foo = "bar"
...
}
So this command
val myUser = User("Foo", 25, List("Lorem", "Ipsum"))
myUser.asMap
returns
Map("name" -> "Foo", "age" -> 25, "posts" -> List("Lorem", "Ipsum"), "numPosts" -> 2)
This is where Tuples for the Map are generated (see Travis Brown's answer):
...
val pairs = weakTypeOf[T].declarations.collect {
case m: MethodSymbol if m.isAccessor =>
val name = c.literal(m.name.decoded)
val value = c.Expr(Select(model, m.name))
reify(name.splice -> value.splice).tree
}
...
Now I want to ignore fields that have #transient annotation. How would I check if a method has a #transient annotation?
I'm thinking of modifying the snippet above as
val pairs = weakTypeOf[T].declarations.collect {
case m: MethodSymbol if m.isAccessor && !m.annotations.exists(???) =>
val name = c.literal(m.name.decoded)
val value = c.Expr(Select(model, m.name))
reify(name.splice -> value.splice).tree
}
but I can't find what I need to write in exists part. How would I get #transient as an Annotation so I could pass it there?
Thanks in advance!
The annotation will be on the val itself, not on the accessor. The easiest way to access the val is through the accessed method on MethodSymbol:
def isTransient(m: MethodSymbol) = m.accessed.annotations.exists(
_.tpe =:= typeOf[scala.transient]
)
Now you can just write the following in your collect:
case m: MethodSymbol if m.isAccessor && !isTransient(m) =>
Note that the version of isTransient I've given here has to be defined in your macro, since it needs the imports from c.universe, but you could factor it out by adding a Universe argument if you're doing this kind of thing in several macros.
Related
New to Scala, continue to struggle with Option related code. I have a HashMap built of Case Class instances that themselves contain hash maps with Case Class instance values. It is not clear to me how to access properties of the retrieved Class instances:
import collection.mutable.HashMap
case class InnerClass(name: String, age: Int)
case class OuterClass(name: String, nestedMap: HashMap[String, InnerClass])
// Load some data...hash maps are mutable
val innerMap = new HashMap[String, InnerClass]()
innerMap += ("aaa" -> InnerClass("xyz", 0))
val outerMap = new HashMap[String, OuterClass]()
outerMap += ("AAA" -> OuterClass("XYZ", innerMap))
// Try to retrieve data
val outerMapTest = outerMap.getOrElse("AAA", None)
val nestedMap = outerMapTest.nestedMap
This produces error: value nestedMap is not a member of Option[ScalaFiddle.OuterClass]
// Try to retrieve data a different way
val outerMapTest = outerMap.getOrElse("AAA", None)
val nestedMap = outerMapTest.nestedMap
This produces error: value nestedMap is not a member of Product with Serializable
Please advise on how I would go about getting access to outerMapTest.nestedMap. I'll eventually need to get values and properties out of the nestedMap HashMap as well.
Since you are using .getOrElse("someKey", None) which returns you a type Product (not the actual type as you expect to be OuterClass)
scala> val outerMapTest = outerMap.getOrElse("AAA", None)
outerMapTest: Product with Serializable = OuterClass(XYZ,Map(aaa -> InnerClass(xyz,0)))
so Product either needs to be pattern matched or casted to OuterClass
pattern match example
scala> outerMapTest match { case x : OuterClass => println(x.nestedMap); case _ => println("is not outerclass") }
Map(aaa -> InnerClass(xyz,0))
Casting example which is a terrible idea when outerMapTest is None, (pattern matching is favored over casting)
scala> outerMapTest.asInstanceOf[OuterClass].nestedMap
res30: scala.collection.mutable.HashMap[String,InnerClass] = Map(aaa -> InnerClass(xyz,0))
But better way of solving it would simply use .get which very smart and gives you Option[OuterClass],
scala> outerMap.get("AAA").map(outerClass => outerClass.nestedMap)
res27: Option[scala.collection.mutable.HashMap[String,InnerClass]] = Some(Map(aaa -> InnerClass(xyz,0)))
For key that does not exist, gives you None
scala> outerMap.get("I dont exist").map(outerClass => outerClass.nestedMap)
res28: Option[scala.collection.mutable.HashMap[String,InnerClass]] = None
Here are some steps you can take to get deep inside a nested structure like this.
outerMap.lift("AAA") // Option[OuterClass]
.map(_.nestedMap) // Option[HashMap[String,InnerClass]]
.flatMap(_.lift("aaa")) // Option[InnerClass]
.map(_.name) // Option[String]
.getOrElse("no name") // String
Notice that if either of the inner or outer maps doesn't have the specified key ("aaa" or "AAA" respectively) then the whole thing will safely result in the default string ("no name").
A HashMap will return None if a key is not found so it is unnecessary to do getOrElse to return None if the key is not found.
A simple solution to your problem would be to use get only as below
Change your first get as
val outerMapTest = outerMap.get("AAA").get
you can check the output as
println(outerMapTest.name)
println(outerMapTest.nestedMap)
And change the second get as
val nestedMap = outerMapTest.nestedMap.get("aaa").get
You can test the outputs as
println(nestedMap.name)
println(nestedMap.age)
Hope this is helpful
You want
val maybeInner = outerMap.get("AAA").flatMap(_.nestedMap.get("aaa"))
val maybeName = maybeInner.map(_.name)
Which if your feeling adventurous you can get with
val name: String = maybeName.get
But that will throw an error if its not there. If its a None
you can access the nestMap using below expression.
scala> outerMap.get("AAA").map(_.nestedMap).getOrElse(HashMap())
res5: scala.collection.mutable.HashMap[String,InnerClass] = Map(aaa -> InnerClass(xyz,0))
if "AAA" didnt exist in the outerMap Map object then the below expression would have returned an empty HashMap as indicated in the .getOrElse method argument (HashMap()).
I would like to use macro to generate a setter for case classes. e.g:
case class Person(name: String, age: Int)
Macro.mkSetter[Person, String]("name") : Person => String => Person
I tried the following implementation but I keep getting the following
error: scala: Error: Unknown source file: embeddedFile--QuasiquoteCompat.scala#6....
(I am using scala 2.10.3 with macro-paradise 2.0.0-SNAPSHOT)
object Macro {
def mkSetter[A, B](fieldName: String): (A,B) => A = macro mkSetter_impl[A,B]
def mkSetter_impl[A: c.WeakTypeTag, B: c.WeakTypeTag](c : Context)(fieldName: c.Expr[String]): c.Expr[(A,B) => A] = {
import c.universe._
val (aTpe, bTpe) = (weakTypeOf[A], weakTypeOf[B])
val constructor = aTpe.declarations.collectFirst {
case m: MethodSymbol if m.isPrimaryConstructor => m
}.getOrElse(c.abort(c.enclosingPosition, s"Cannot find constructor in ${weakTypeOf[A]}"))
val field = constructor.paramss.head.find(
_.name.decoded == fieldName.toString()
).getOrElse(c.abort(c.enclosingPosition, s"Cannot find constructor field named in $fieldName"))
c.Expr[(A,B) => A](q"{(a: $aTpe, b: $bTpe) => a.copy(${field.name} = b)}")
}
}
I do realise that _.name.decoded == fieldName.toString() is not correct way to check method name (even if _.name.decoded == "name" seems to be ok)
Bonus point: generalise macro with varags parameters for parameters with same type, e.g.
def mkSetter[A, B](fieldNames: String*): A => B => B ... => A = macro mkSetter_impl[A,B]
Thank you!
Seems to be caused by https://github.com/scalamacros/paradise/issues/11. This week I planned to fix that issue, so it should be fine soon. You could subscribe to updates at scalamacros.org (http://scalamacros.org/news/rss.xml) or follow me on Twitter to get notified when the fix is deployed.
As a follow up of
Matt R's question, as Scala 2.10 has been out for quite an amount of time, what would be the best way to extract the fields and values of a case class. Taking a similar example:
case class Colour(red: Int, green: Int, blue: String) {
val other: Int = 42
}
val RBG = Colour(1,3,"isBlue")
I want to get a list (or array or any iterator for that matter) that would have the fields declared in the constructor as tuple values like these:
[(red, 1),(green, 3),(blue, "isBlue")]
I know the fact that there are a lot of examples on the net regarding the same issue but as I said, I wanted to know what should be the most ideal way to extract the required information
If you use Scala 2.10 reflection, this answer is half of the things you need. It will give you the method symbols of the case class, so you know the order and names of arguments:
import scala.reflect.runtime.{universe => ru}
import ru._
def getCaseMethods[T: TypeTag] = typeOf[T].members.collect {
case m: MethodSymbol if m.isCaseAccessor => m
}.toList
case class Person(name: String, age: Int)
getCaseMethods[Person] // -> List(value age, value name)
You can call .name.toString on these methods to get the corresponding method names.
The next step is to invoke these methods on a given instance. You need a runtime mirror for that
val rm = runtimeMirror(getClass.getClassLoader)
Then you can "mirror" an actual instance:
val p = Person("foo", 33)
val pr = rm.reflect(p)
Then you can reflect on pr each method using reflectMethod and execute it via apply. Without going through each step separately, here is a solution altogether (see the val value = line for the mechanism of extracting a parameter's value):
def caseMap[T: TypeTag: reflect.ClassTag](instance: T): List[(String, Any)] = {
val im = rm.reflect(instance)
typeOf[T].members.collect {
case m: MethodSymbol if m.isCaseAccessor =>
val name = m.name.toString
val value = im.reflectMethod(m).apply()
(name, value)
} (collection.breakOut)
}
caseMap(p) // -> List(age -> 33, name -> foo)
Every case object is a product, therefore you can use an iterator to get all its parameters' names and another iterator to get all its parameters' values:
case class Colour(red: Int, green: Int, blue: String) {
val other: Int = 42
}
val rgb = Colour(1, 3, "isBlue")
val names = rgb.productElementNames.toList // List(red, green, blue)
val values = rgb.productIterator.toList // List(1, 3, isBlue)
names.zip(values).foreach(print) // (red,1)(green,3)(blue,isBlue)
By product I mean both Cartesian product and an instance of Product. This requires Scala 2.13.0; although Product was available before, the iterator to get elements' names was only added in version 2.13.0.
Notice that no reflection is needed.
I have a class that represents sales orders:
class SalesOrder(val f01:String, val f02:Int, ..., f50:Date)
The fXX fields are of various types. I am faced with the problem of creating an audit trail of my orders. Given two instances of the class, I have to determine which fields have changed. I have come up with the following:
class SalesOrder(val f01:String, val f02:Int, ..., val f50:Date){
def auditDifferences(that:SalesOrder): List[String] = {
def diff[A](fieldName:String, getField: SalesOrder => A) =
if(getField(this) != getField(that)) Some(fieldName) else None
val diffList = diff("f01", _.f01) :: diff("f02", _.f02) :: ...
:: diff("f50", _.f50) :: Nil
diffList.flatten
}
}
I was wondering what the compiler does with all the _.fXX functions: are they instanced just once (statically), and can be shared by all instances of my class, or will they be instanced every time I create an instance of my class?
My worry is that, since I will use a lot of SalesOrder instances, it may create a lot of garbage. Should I use a different approach?
One clean way of solving this problem would be to use the standard library's Ordering type class. For example:
class SalesOrder(val f01: String, val f02: Int, val f03: Char) {
def diff(that: SalesOrder) = SalesOrder.fieldOrderings.collect {
case (name, ord) if !ord.equiv(this, that) => name
}
}
object SalesOrder {
val fieldOrderings: List[(String, Ordering[SalesOrder])] = List(
"f01" -> Ordering.by(_.f01),
"f02" -> Ordering.by(_.f02),
"f03" -> Ordering.by(_.f03)
)
}
And then:
scala> val orderA = new SalesOrder("a", 1, 'a')
orderA: SalesOrder = SalesOrder#5827384f
scala> val orderB = new SalesOrder("b", 1, 'b')
orderB: SalesOrder = SalesOrder#3bf2e1c7
scala> orderA diff orderB
res0: List[String] = List(f01, f03)
You almost certainly don't need to worry about the perfomance of your original formulation, but this version is (arguably) nicer for unrelated reasons.
Yes, that creates 50 short lived functions. I don't think you should be worried unless you have manifest evidence that that causes a performance problem in your case.
But I would define a method that transforms SalesOrder into a Map[String, Any], then you would just have
trait SalesOrder {
def fields: Map[String, Any]
}
def diff(a: SalesOrder, b: SalesOrder): Iterable[String] = {
val af = a.fields
val bf = b.fields
af.collect { case (key, value) if bf(key) != value => key }
}
If the field names are indeed just incremental numbers, you could simplify
trait SalesOrder {
def fields: Iterable[Any]
}
def diff(a: SalesOrder, b: SalesOrder): Iterable[String] =
(a.fields zip b.fields).zipWithIndex.collect {
case ((av, bv), idx) if av != bv => f"f${idx + 1}%02d"
}
I have code that deeply walks a case class' constructor fields, which of course may themselves be complex (list of things, maps, options, and other case classes). The code I found to extract field values at runtime works great on the highest-level fields but explodes when I try to access deeper fields. Example below.
I real life my application introspects the fields at each level, so I know that 'stuff' is another case class (I have the Symbol/Type), and I know Dos' field Symbols/Types. But this is obtained at runtime so I think it's blowing up because it doesn't know [T]/Manifest[T]. Is there a way to get this at runtime via reflection? How might my code change? The examples I found seemed to all require various things[T], which I wouldn't have for 'dos', right?
case class Uno( name:String, age:Int, pets:List[String], stuff:Dos )
case class Dos( foo:String )
object Boom extends App {
val ru = scala.reflect.runtime.universe
val m = ru.runtimeMirror(getClass.getClassLoader)
val u = Uno("Marcus",19,List("fish","bird"),Dos("wow"))
println("NAME: "+unpack(u,"name")) // Works
println("PETS: "+unpack(u,"pets")) // Works
// ----- Goes Boom -------
val dos = unpack(u,"stuff")
println("Other: "+unpack(dos,"foo")) // Boom!
// -----------------------
// Get object value for named parameter of target
def unpack[T]( target:T, name:String )(implicit man:Manifest[T]) : Any = {
val im = m.reflect(target)
val fieldX = ru.typeOf[T].declaration(ru.newTermName(name)).asTerm.accessed.asTerm
im.reflectField(fieldX).get
}
}
You're exactly right, the type of your dos is Any.
FieldMirror.symbol.typeSignature is what you'd get from typeOf[Dos].
So consider returning a pair (Any, Type) from unpack to have something to pass to unpack(target, type, name). Somewhat like:
case class Uno(name: String, age: Int, pets: List[String], stuff: Dos)
case class Dos(foo: String)
object Boom extends App {
import scala.reflect.runtime.universe._
import scala.reflect.runtime.{ currentMirror => cm }
import scala.reflect.ClassTag
val u = Uno("Marcus", 19, List("fish", "bird"), Dos("wow"))
println("NAME: " + unpack(u, "name")) // Works
println("PETS: " + unpack(u, "pets")) // Works
// ----- Goes Boom -------
val (dos, dosT) = unpack(u, "stuff")
println("Other: " + unpack(dos, dosT, "foo")) // Boom! ...or fizzle
// -----------------------
def unpack[T: TypeTag](target: T, name: String): (Any, Type) = unpack(target, typeOf[T], name)
// Get object value for named parameter of target
def unpack[T](target: T, t: Type, name: String): (Any, Type) = {
val im = cm.reflect(target)(ClassTag(target.getClass))
val fieldX = t.declaration(newTermName(name)).asTerm.accessed.asTerm
val fm = im.reflectField(fieldX)
(fm.get, fm.symbol.typeSignature)
}
}