Disclaimer: this is not for optimization, just out of curiosity.
I'm wondering if this:
SET search_path TO myscheme; -- obviously this is done once per connection
SELECT foo, bar FROM table1 WHERE [..clauses..]
is somehow faster / slower than
SELECT foo, bar FROM myscheme.table1 WHERE [..clauses..]
or if there are some other implications that could suggest specifying the schema (or not) in every query.
I've done some (really few) tests and I can't see any difference in terms of speed.
The second one is faster, but barely. SET is extremely cheap.
Generally, a schema-qualified table name has the potential to be slightly faster, since the query to the system catalog can be more specific. But you won't be able to measure that. It's just irrelevant, performance-wise.
Setting the search_path does have implications for security and convenience though. It is generally a good idea.
For instance, consider the advice in the manual on "Writing SECURITY DEFINER Functions Safely".
Are you aware that there are many ways to set the search_path?
For all practical purposes this should make any measurable difference.
IF there is a measurable difference, I would guess, that the system has
a search_path with very many schema entries (several hundreds) and/or
an extreme number of relations (so many that the relation catalogue does not fit into memory for the normal workload).
In that case you have definitely other problems than qualifying you schema names.
Related
I am designing a database in Postgresql and I would like to have some expert advices before refactorizing my work.
The database naturally contains different parts that I plan to separate into schemas in order to have a mangling of object names that reflect logical organization of them. About 20 tables are for scientific purposes and 20 others are technical and 20 furthers are about administrative tasks.
Is that a good idea or am I misleading myself into a management overhead that I will regret later?
The database contains 3 tables that are huge. By huge, I mean there is more than 60 millions of rows in it and they might grow a little bit. I think I will create special tablespace for that tables. I would like to do it, in order to separate logically the place where data are stored because the rest of the database should be backuped in a different way than that three tables.
Further more one those 3 tables contains binary data that are not heavy but weight a bit when multiplying by the amount of rows and also this table grows faster than the 2 others. Then I will periodically purge it after backuping the table.
Is it a good idea to have more than one tablespace in a database? If so, is there any precaution to be taken when proceeding this way?
Thank you in advance for your advices.
Choosing good names & grouping database stuffs is always a wise choice, and such overheads are not usually considerable.
About separating tablespace of a single database, it also should not cause any special problem, I've a similar database (but in mysql) that has a large file table and I had to move all of it's content to another server for some optimization reasons and i had no problem with it till now.
There is a very more important matter in RDBMS designing and that's CORRECT TABLE INDEXING. I think choosing good indexes is most critical phase of designing a relational database and you'll see it's effect soon (when you begin to write JOIN queries!).
In general, designing and implementing database is an experimental job that depends to your situation and expertness, so you can't seek for a solid instruction.
Q1: What is the maximum number of tables can store in database?
Q2: What is the maximum number of tables can union in view?
Q1: There's no explicit limit in the docs. In practice, some operations are O(n) on number of tables; expect planning times to increase, and problems with things like autovacuum as you get to many thousands or tens of thousands of tables in a database.
Q2: It depends on the query. Generally, huge unions are a bad idea. Table inheritance will work a little better, but if you're using constraint_exclusion will result in greatly increased planning times.
Both these questions suggest an underlying problem with your design. You shouldn't need massive numbers of tables, and giant unions.
Going by the comment in the other answer, you should really just be creating a few tables. You seem to want to create one table per phone number, which is nonsensical, and to create views per number on top of that. Do not do this, it's mismodelling the data and will make it harder, not easier, to work with. Indexes, where clauses, and joins will allow you to use the data more effectively when it's logically structured into a few tables. I suggest studying basic relational modelling.
If you run into scalability issues later, you can look at partitioning, but you won't need thousands of tables for that.
Both are, in a practical sense, without limit.
The number of tables a database can hold is restricted by the space on your disk system. However, having a database with more than a few thousand tables is probably more an expression of an incorrect analysis of your application domain. Same goes for unions: if you have to union more than a handful of tables you probably should look at your table structure.
One practical scenario where this can happen is with Postgis: having many tables with similar attributes that could be joined in a single view (this is a flaw in the design of Postgis IMHO), but that would typically be handled at the application side (e.g. a GIS).
Can you explain your scenario where you would need a very large number of tables that need to be queried in one sweep?
I have four tables as:
ProductAttribute - Stored Product Attribute (Color, Size, etc.)
ProductAttributeValue - Stored Product Attribute Value (Green, 10, etc.)
MapProductAttributeValue - Stored relation between Product Attribute and its Values (COlor-Green, COlor-Blue)
MapProductAndAttributeValue - Stored relation between Product table and MapProductAttributeValue table
How can I denormalize this schema MySQL? i do not want to go for NOSQL.
i want to use RDBMS approach only or can i have some different storage mechanism?
Well, you don't explain the problem you have in details, but as it is most likely performance related, there are some options without going to NoSQL or rather NewSQL.
It seems like you have some kind of a product database "with flavors", and modern systems should be able to handle HUGE product trees with normalized DB, provided that the application is a good citizen.
Before going to denormalizing the database, I say something, that you may have done already, but as your question does not have those details in place, just in case I add some things to be considered:
Your problem is most likely an io-bottleneck. Can you give any details of distribution of IO over different spindles? As performance impact from io-bootleneck (or maybe memory, which is even worse) as primary bottleneck is exponential instead of linear, off-loading and/or distributing the IO is first thing to check.
Have you analyzed the io-profile in details? Are you using "plain" MySQL or InnoDB?
Optimize the RAM use to cache the database. What is the size of DB? Few gigabytes of memory is cheap and buys you time to truly understand the challenge. Remember: Locality is a challenge, if your demand exceeds the resource (io/RAM) by 10% you might get a performance penalty of 90%. By solving the primary and secondary bottlenecks AND setting right parameters for your RDBMS, you may see a HUGE difference.
If none of above works, consider using SQL compliant IMDB (in-memory database) which most have quite sophisticated algorithms to optimize the "hot spots" of data.
Only if you have done/considered all of above I would go to denormalizing the database, unless it is brain dead from a beginning ;-)
So in short: Monitor the system, collect the evidence where the bottleneck is and then solve the true problem, what ever it might be.
cheers, //Jari
Can we get a list of basic optimization techniques going (anything from modeling to querying, creating indexes, views to query optimization). It would be nice to have a list of these, one technique per answer. As a hobbyist I would find this to be very useful, thanks.
And for the sake of not being too vague, let's say we are using a maintstream DB such as MySQL or Oracle, and that the DB will contain 500,000-1m or so records across ~10 tables, some with foreign key contraints, all using the most typical storage engines (eg: InnoDB for MySQL). And of course, the basics such as PKs are defined as well as FK contraints.
Learn about indexes, and use them properly. Generally speaking*, follow these guidelines:
Every table should have a clustered index
Fields used for filters and sorts are good candidates for indexing
More selective fields are better candidates for indexing
For best performance on crucial queries, design "covering indexes" for those queries
Make sure your indexes are actually being used, and remove those that aren't
If your table has 15 fields, and you make 15 indexes, each with only a single field, you're doing it wrong :)
*There are some exceptions to these rules if you know what you're doing. My experience is Microsoft SQL Server, but I would presume most of this advice would still apply to a different RDMS.
IMO, by far the best optimization is to have the data model fit the problem domain for which it was built. When it does not, the resulting symptom is difficult-to-write or convoluted queries in order to get the information desired and that typically rears itself when reports are built against the database. Thus, in designing a database it helps to have an idea as to the types and nature of the information, such as reports, that the users will want from the system.
When talking database design, check out the database normalization, e.g. the wikipedia article: Normal forms.
If you have a good design and still you need to optimize for performance, try Denormalisation.
If you have specific needs which are not covered by relational model efficiently, look at other models covered by the term NoSQL.
Some query/schema optimizations:
Be mindful when using DISTINCT or GROUP BY. I find that many new developers will use DISTINCT in places where it really is not needed or could be rewritten more efficiently using an Exists statement or a derived query.
Be mindful of Left Joins. All too often I find new SQL developers will ignore the schema in place and use Left Joins where they really are not necessary. For example:
Select
From Orders
Left Join Customers
On Customers.Id = Orders.CustomerId
If Orders.CustomerId is a required column, then it is not necessary to use a left join.
Be a student of new features. Currently, MySQL does not support common-table expressions which means that some types of queries are cumbersome and probably slower to write than they would be if CTEs were supported. However, that will not be true forever. Keep up on new syntax features in MySQL which might be used to make existing queries more efficient.
You do not have to use surrogate keys everywhere. There might be tables better suited to an intelligent key (e.g. US State abbreviations, Currency Codes etc) which would enable developers to avoid additional joins in many cases.
If possible, find ways of archiving data to an OLAP or reporting server. The smaller you can make the production data, the faster it will run.
A design that concisely models your problem is always a good start. Overgeneralizing the data model can lead to performance problems. For example, I've heard reports of projects striving for uber-flexibility that use the RDBMS as a dumb "name/value" store - and resulting performance was appalling.
Once a good design is in place, then use the tools provided by the RDBMS to help it achieve good performance. Single field PKs (no composites), but composite business keys as an index with unique constraint, use of appropriate data types, e.g. using appropriate numeric types for numeric values rather than char or similar. Physical attributes of the hardware the RDBMS is running on should also be considered, since the bulk of query time is often disk I/O - but of course don't take this for granted - use a profiler to find out where the time is going.
Depending upon the update/query ratio, materialized views/indexed views can be useful in improving performance for slow running queries. A poor-man's alternative is to use triggers to invoke a procedure that populates the table with a result of a slow-running, infrequently-changed view.
Query optimization is a bit of a black art since it is often database-dependent, but some rules of thumb are given here - Optimizing SQL.
Finally, although possibly outside the intended scope of your question, use a good data access layer in your application, and avoid the temptation to roll your own - there are surely tested and performant implementations available for all major languages. Use of caching at the data access layer, middle tier and application layer can help improve performance considerably.
Do use less query whenever possible. Use "JOIN", and group your tables so that a single query gives your results.
A good example is the Modified Preorder Tree Transversal (MPTT) to get all of a tree node parents, ordered, in a single query.
Take a holistic approach to optimization.
Consider the impact of slow disks, network latency, lack of memory, and server load.
I am very eager to know the real cause though earned some knowledge from googling.
Thanks in adavnce
Because SQL is a really poor language for writing procedural code, and because the SQL engine, storage, and optimizer are designed to make it efficient to assemble and join sets of records.
(Note that this isn't just applicable to SQL Server, but I'll leave your tags as they are)
Because, in general, the hundreds of man-years of development time that have gone into the database engine and optimizer, and the fact that it has access to real-time statistics about the data, have resulted in it being better than the user in working out the best way to process the data, for a given request.
Therefore by saying what we want to achieve (with a set-based approach), and letting it decide how to do it, we generally achieve better results than by spelling out exactly how to provess the data, line by line.
For example, suppose we have a simple inner join from table A to table B. At design time, we generally don't know 'which way round' will be most efficient to process: keep a list of all the values on the A side, and go through B matching them, or vice versa. But the query optimizer will know at runtime both the numbers of rows in the tables, and also the most recent statistics may provide more information about the values themselves. So this decision is obviously better made at runtime, by the optimizer.
Finally, note that I have put a number of 'generally's in this post - there will always be times when we know better than the optimizer will, and for such times we can provide hints (NOLOCK etc).
Set based approaches are declarative, so you don't describe the way the work will be done, only what you want the result to look like. The server can decide between several strategies how to complay with your request, and hopefully choose one that is efficient.
If you write procedural code, that code will at best be less then optimal in some situation.
Because using a set-based approach to SQL development conforms to the design of the data model. SQL is a very set-based language, used to build sets, subsets, unions, etc, from data. Keeping that in mind while developing in TSQL will generally lead to more natural algorithms. TSQL makes many procedural commands available that don't exist in plain SQL, but don't let that switch you to a procedural methodology.
This makes me think of one of my favorite quotes from Rob Pike in Notes on Programming C:
Data dominates. If you have chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming.
SQL databases and the way we query them are largely set-based. Thus, so should our algorithms be.
From an even more tangible standpoint, SQL servers are optimized with set-based approaches in mind. Indexing, storage systems, query optimizers, and other optimizations made by various SQL database implmentations will do a much better job if you simply tell them the data you need, through a set-based approach, rather than dictating how you want to get it procedurally. Let the SQL engine worry about the best way to get you the data, you just worry about telling it what data you want.
As each one has explained, let the SQL engine help you, believe, it is very smart.
If you do not use to write set based solution and use to develop procedural code, you will have to spend some time until write well formed set based solutions. This is a barrier for most people. A tip if you wish to start coding set base solutions is, stop thinking what you can do with rows, and start thinking what you can do with collumns, and do practice functional languages.