MATLAB uint8 data type variable save - matlab

does anyone know how to save an uint8 workspace variable to a txt file?
I tried using MATLAB save command:
save zipped.txt zipped -ascii
However, the command window displayed warning error:
Warning: Attempt to write an unsupported data type to an ASCII file.
Variable 'zipped' not written to file.

In order to write it, simply cast your values to double before writing it.
A=uint8([1 2 3])
toWrite=double(A)
save('test.txt','toWrite','-ASCII')
The reason uint8 can't be written is hidden in the format section of the save doc online, took myself a bit to find it.
The doc page is here: http://www.mathworks.com/help/matlab/ref/save.html
The 3rd line after the table in the format section (about halfway down the page) says:
Each variable must be a two-dimensional double or character array.
Alternatively, dlmwrite can write matrices of type uint8, as the other poster also mentioned, and I am sure the csv one will work too, but I haven't tested it myself.
Hopefully that will help you out, kinda annoying though! I think uint8 is used almost exclusively for images in MATLAB, but I am assuming writing the values as an image is not feasible in your situation.

have you considered other write-to-file options in Matlab?
How about dlmwrite?
Another option might be cvswrite.
For more information see this document.

Try the following:
%# a random matrix of type uint8
x = randi(255, [100,3], 'uint8');
%# build format string
frmt = repmat('%u,',1,size(x,2));
frmt = [frmt(1:end-1) '\n'];
%# write matrix to file in one go
f = fopen('out.txt','wt');
fprintf(f, frmt, x');
fclose(f);
The resulting file will be something like:
16,108,149
174,25,138
11,153,222
19,121,68
...
where each line corresponds to a matrix row.
Note that this is much faster than using dlmwrite which writes one row at a time

Related

Why can't MATLAB save uint8 type matrix?

Here is the code:
x = rand(5)*100;
save('pqfile.txt','x','-ascii','-tabs')
The above works, but:
x = rand(5)*100;
x = uint8(x);
save('pqfile.txt','x','-ascii','-tabs')
says:
Warning: Attempt to write an unsupported data type to an ASCII file.
Variable 'x' not written to file.
Does anyone know why this happens? How come I can't save the data when it is uint8. I have to read data into a VHDL testbench so was experimenting. I guess the only option is to save my 8 bit unsigned integer values in 2d array using printf then read into the test bench.
ASCII option
The save method is somewhat restrictive in what it can support, and then it uses floating point notation to represent your numbers which bloats your file when dealing with a limited range of numbers like you are (i.e. uint8, 0 to 255).
Check out dlmwrite as an alternative (documentation here).
It takes the filename to write/save to, the variable to store, and some additional parameters, like the delimiter you want to separate your values with.
For your example, it looks like this
x = rand(5)*100;
x = uint8(x);
dlmwrite('pqfile.txt',x,'\t');
Binary option
If you are looking to stored your uint8 data as single bytes then you probably want go with a custom binary file instead instead of ASCII. (Yes, you can convert uint8 to single ASCII characters but you run into issues with these values being interpreted with your delimiters; newlines or tabs.)
fid=fopen('pqfile.dat','wb');
if(fid>2)
fwrite(fid,size(x),'*uint8'); % Note: change data type here you are dealing with more than 255 rows or columns
fwrite(fid,x','*uint8'); % Transpose x (with x') so it is stored in row order.
fclose(fid);
else
fprintf(1,'Could not open the file for writing.\n');
end
I'm not sure what type of parser you are using for your VHDL, but this will pack your data into a file with a short header of the expected dimensions followed by one long row of your serialized data.
To read it back in with MATLAB, you can do this:
fid = fopen('pqfile.dat','rb');
szX = fread(fid,2,'uint8');
x = fread(fid,szX,'*uint8')'; % transpose back if you are dealing with matlab.
fclose(fid);
The transpose operations are necessary for MATLAB because it reads data column-wise, whereas most other languages (in my experience) read row-wise.

Simplest way to read space delimited text file matlab

Ok, so I'm struggling with the most mundane of things I have a space delimited text file with a header in the first row and a row per observation and I'd like to open that file in matlab. If I do this in R I have no problem at all, it'll create the most basic matrix and voila!
But MATLAB seems to be annoying with this...
Example of the text file:
"picFile" "subjCode" "gender"
"train_1" 504 "m"
etc.
Can I get something like a matrix at all? I would then like to have MATLAB pull out some data by doing data(1,2) for example.
What would be the simplest way to do this?
It seems like having to write a loop using f-type functions is just a waste of time...
If you have a sufficiently new version of Matlab (R2013b+, I believe), you can use readtable, which is very much like how R does it:
T = readtable('data.txt','Delimiter',' ')
There are many functions for manipulating tables and converting back and forth between them and other data types such as cell arrays.
There are some other options in the data import and export section of the Statistics toolbox that should work in older versions of Matlab:
tblread: output in terms of separate variables for strings and numbers
caseread: output in terms of a char array
tdfread: output in terms of a struct
Alternatively, textscan should be able to accomplish what you need and probably will be the fastest:
fid = fopen('data.txt');
header = textscan(fid,'%s',3); % Optionally save header names
C = textscan(fid,'%s%d%s','HeaderLines',1); % Read data skipping header
fclose(fid); % Don't forget to close file
C{:}
Found a way to solve my problem.
Because I don't have the latest version of MATLAB and cannot use readable which would be the preferred option I ended up doing using textread and specifying the format of each column.
Tedious but maybe the "simplest" way I could find:
[picFile subCode gender]=textread('data.txt', '%s %f %s', 'headerlines',1);
T=[picFile(:) subCode(:) gender(:)]
The textscan solution by #horchler seems pretty similar. Thanks!

Memory map file in MATLAB?

I have decided to use memmapfile because my data (typically 30Gb to 60Gb) is too big to fit in a computer's memory.
My data files consist two columns of data that correspond to the outputs of two sensors and I have them in both .bin and .txt formats.
m=memmapfile('G:\E-Stress Research\Data\2013-12-18\LD101_3\EPS/LD101_3.bin','format','int32')
m.data(1)
I used the above code to memory map my data to a variable "m" but I have no idea what data format to use (int8', 'int16', 'int32', 'int64','uint8', 'uint16', 'uint32', 'uint64', 'single', and 'double').
In fact I tried all of the data formats listed that MATLAB supports, but when I used the m.data(index number) I never get a pair of numbers (2 columns of data) which is what I expected, also the number will be different depending on the format I used.
If anyone has experience with memmapfile please help me.
Here are some smaller versions of my data files so people can understand how my data is structured:
cheers
James
memmapfile is designed for reading binary files, that's why you are having trouble with your text file. The data in there is characters, so you'll have to read them as characters and then parse them into numbers. More on that below.
The binary file appears to contain more than just a stream of floating point values written in binary format. I see identifiers (strings) and other things in the file as well. Your only hope of reading that is to contact the manufacturer of the device that created the binary file and ask them about how to read in such files. There'll probably be an SDK, or at least a description of the format. You might want to look into this as the floating point numbers in your text file might be truncated, i.e., you have lost precision compared to directly reading the binary representation of the floats.
Ok, so how to read your file with memmapfile? This post provides some hints.
So first we open your file as 'uint8' (note there is no 'char' option, so as a workaround we read the content of the file into a datatype of the same size):
m = memmapfile('RTL5_57.txt','Format','uint8'); % uint8 is default, you could leave that off
We can render the data read in as uint8 as characters by casting it to char:
c = char(m.Data(1:19)).' % read the first three lines. NB: transpose just for getting nice output, don't use it in your code
c =
0.398516 0.063440
0.399611 0.063284
0.398985 0.061253
As each line in your file has the same length (2*8 chars for the numbers, 1 tab and 2 chars for newline = 19 chars), we can read N lines from the file by reading N*19 values. So m.Data(1:19) gets you the first line, m.Data(20:38), the second line, and m.Data(20:57) the second and third lines. Read as much as you want at once.
Then we'll have to parse the read-in data into floating point numbers:
f = sscanf(c,'%f')
f =
0.3985
0.0634
0.3996
0.0633
0.3990
0.0613
All that's left now is to reshape them into your two column format
d = reshape(f,2,[]).'
d =
0.3985 0.0634
0.3996 0.0633
0.3990 0.0613
Easier ways than using memmapfile:
You don't need to use memmapfile to solve your problem, and I think it makes things more complicated. You can simply use fopen followed by fread:
fid = fopen('RTL5_57.txt');
c = fread(fid,Nlines*19,'*char');
% now sscanf and reshape as above
% NB: one can read the values the text file directly with f = fscanf(fid,'%f',Nlines*19).
% However, in testing, I have found calling fread followed by sscanf to be faster
% which will make a significant difference when reading such large files.
Using this you can read Nlines pairs of values at a time, process them and simply call fread again to read the next Nlines. fread remembers where it is in the file (as does fscanf), so simply use same call to get next lines. Its thus easy to write a loop to process the whole file, testing with feof(fid) if you are at the end of the file.
An even easier way is suggested here: use textscan. To slightly adapt their example code:
Nlines = 10000;
% describe the format of the data
% for more information, see the textscan reference page
format = '%f\t%f';
fid = fopen('RTL5_57.txt');
while ~feof(fid)
C = textscan(fid, format, Nlines, 'CollectOutput', true);
d = C{1}; % immediately clear C at this point if you need the memory!
% process d
end
fclose(fid);
Note again however that the fread followed by sscanf will be fastest. Note however that the fread method would die as soon as there is one line in the text file that doesn't exactly match your format. textscan is forgiving of whitespace changes on the other hand and thus more robust.

Convert binary data to jpeg

I have spent the last couple hours scouring the Internet for a solution to my problem, and while I have seen some "answers" on other forums, none of them suit my needs...
I have a binary file, which I am creating in Matlab using fwrite (although, if someone has a better way to generate a binary file in Matlab, I'm open to suggestions). Back to my problem - I have this binary file, and I want to convert it to a jpeg. Nevermind where the binary data comes from, I just want to generate a jpeg image of the binary data.
Is this even possible? - Like I said, lots of "solutions" out there to similar problems, but none match up to my needs.
I can write code in C++, if necessary, but for simplicity, I'd like to stay in Matlab.
Any help will be appreciated.
EDIT:
from binary to array:
fid = fopen('yourfilename.bin');
% read the entire file as characters
% transpose so that F is a row vector
B = fread(fid, '*char')'
fclose(fid);
Reshape to array according to image dimensions
C=reshape(B,512,512); % or whatever dimension you have
Upon having the array of strings just use:
D=int32(str2num(C));

Fastest way to import CSV files in MATLAB

I've written a script that saves its output to a CSV file for later reference, but the second script for importing the data takes an ungainly amount of time to read it back in.
The data is in the following format:
Item1,val1,val2,val3
Item2,val4,val5,val6,val7
Item3,val8,val9
where the headers are on the left-most column, and the data values take up the remainder of the row. One major difficulty is that the arrays of data values can be different lengths for each test item. I'd save it as a structure, but I need to be able to edit it outside the MATLAB environment, since sometimes I have to delete rows of bad data on a computer that doesn't have MATLAB installed. So really, part one of my question is: Should I save the data in a different format?
Second part of the question:
I've tried importdata, csvread, and dlmread, but I'm not sure which is best, or if there's a better solution. Right now I'm using my own script using a loop and fgetl, which is horribly slow for large files. Any suggestions?
function [data,headers]=csvreader(filename); %V1_1
fid=fopen(filename,'r');
data={};
headers={};
count=1;
while 1
textline=fgetl(fid);
if ~ischar(textline), break, end
nextchar=textline(1);
idx=1;
while nextchar~=','
headers{count}(idx)=textline(1);
idx=idx+1;
textline(1)=[];
nextchar=textline(1);
end
textline(1)=[];
data{count}=str2num(textline);
count=count+1;
end
fclose(fid);
(I know this is probably terribly written code - I'm an engineer, not a programmer, please don't yell at me - any suggestions for improvement would be welcome, though.)
It would probably make the data easier to read if you could pad the file with NaN values when your first script creates it:
Item1,1,2,3,NaN
Item2,4,5,6,7
Item3,8,9,NaN,NaN
or you could even just print empty fields:
Item1,1,2,3,
Item2,4,5,6,7
Item3,8,9,,
Of course, in order to pad properly you would need to know what the maximum number of values across all the items is before hand. With either format above, you could then use one of the standard file reading functions, like TEXTSCAN for example:
>> fid = fopen('uneven_data.txt','rt');
>> C = textscan(fid,'%s %f %f %f %f','Delimiter',',','CollectOutput',1);
>> fclose(fid);
>> C{1}
ans =
'Item1'
'Item2'
'Item3'
>> C{2}
ans =
1 2 3 NaN %# TEXTSCAN sets empty fields to NaN anyway
4 5 6 7
8 9 NaN NaN
Instead of parsing the string textline one character at a time. You could use strtok to break the string up for example
stringParts = {};
tline = fgetl(fid);
if ~ischar(tline), break, end
i=1;
while 1
[stringParts{i},r]=strtok(tline,',');
tline=r;
i=i+1;
if isempty(r), break; end
end
% store the header
headers{count} = stringParts{1};
% convert the data into numbers
for j=2:length(stringParts)
data{count}(j-1) = str2double(stringParts{j});
end
count=count+1;
I've had the same problem with reading csv data in Matlab, and I was surprised by how little support there is for this, but then I just found the import data tool. I'm in r2015b.
On the top bar in the "Home" tab, click on "Import Data" and choose the file you'd like to read. An app window will come up like this:
Import Data tool screenshot
Under "Import Selection" you have the option to "generate function", which gives you quite a bit of customization options, including how to fill empty cells, and what you'd like the output data structure to be. Plus it's written by MathWorks, so it's probably utilizing the fastest available method to read csv files. It was almost instantaneous on my file.
Q1) If you know the max number of columns you can fill empty entries with NaN
Also, if all values are numerical, do you really need "Item#" column? If yes, you can use only "#", so all data is numerical.
Q2) The fastest way to read num. data from a file without mex-files is csvread.
I try to avoid using strings in csv files, but if I have to, I use my csv2cell function:
http://www.mathworks.com/matlabcentral/fileexchange/20135-csv2cell