In the context of writing Racket macros, what does "3D syntax" mean?
I've heard the phrase a few times. Including once in reference to a macro I was writing. But that was awhile ago; I fixed it, and now I can't remember exactly what I was doing wrong originally.
Also: Is 3D syntax always bad? Or is it like eval (where if you think you need to use it, you're probably wrong, but there are some valid uses in expert hands)?
Syntax objects are usually supposed to be just serializable data. 3D-syntax weakens this condition: it allows us to sneak in arbitrary values, and not just plain data. That's what makes them "3d": they are values that rise above the regular flat things you'd expect out of syntax objects.
For example, we can sneak in lambda values!
#lang racket
(define ns (make-base-namespace))
(define (set-next! n)
(parameterize ([current-namespace ns])
(eval #`(define next #,n)))) ;; <-- 3d-syntax here
(define (compute s)
(parameterize ([current-namespace ns])
(eval s)))
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
(define counter 0)
(set-next! (lambda ()
(set! counter (add1 counter))
counter))
(compute '(+ (next)
(next)
(next)
(next)))
Doing this is usually a bad thing, because the presence of such values probably means an ill-founded attempt to leak information across phases of compilation. The result is something that's likely not separately-compilable. If you see an error that sounds something like:
write: cannot marshal value that is embedded in compiled code value
then that is most likely due to a macro having produced a piece of 3d-syntax that can't be serialized to bytecode.
Sometimes, in rare situations, we really do want 3d-syntax, often in dynamic evaluation contexts. As a concrete example, a debugger in DrRacket may want to annotate the syntax of a program so that function applications directly call back into functions of the debugger, so that we can do things like interactive code coverage coloring in the program editor. In that sense, 3d-syntax can act as a communication channel between dynamically-evaluated code and its ambient environment.
Related
In Lisp, a function's arguments are evaluated first before entering the function body. Macro arguments stay not evaluated.
But sometimes, one wants to inject code pieces stored in variables into a macro. This means evaluating the argument for the macro first, and then apply the macro-of-choice on this evaluated result.
One has to resort to
(eval `(macro ,arg))
To achieve this - but eval does not behave correctly in different environments.
The best thing would be, if one could do:
(apply macro (list arg))
or
(funcall macro arg)
But since the macro is not a function this doesn't work.
Is it possible to achieve something like this? - To circumvent that problem oder to make the macro available in the functions namespace?
Or am I missing some other ways to solve such problems?
I came to this question while trying to answer How to produce HTML from a list. but also in Generate TYPECASE with macro in common lisp, Evaluate arguments passed to a macro that generates functions in lisp, and How to convert a list to code/lambda in scheme?. But I always thought while answering them it would be good to have an apply or funcall-like function which can take macros.
It is not clear what you are trying to do, although it is almost certain that you are confused about something. In particular if you are calling eval inside macroexpansions then in almost all cases you are doing something both seriously wrong and seriously dangerous. I can't ever think of a case where I've wanted macros which expand to things including eval and I have written Lisp for a very very long time.
That being said, here is how you call the function associated with a macro, and why it is very seldom what you want to do.
Macros are simply functions whose domain and range is source code: they are compilers from a language to another language. It is perfectly possible to call the function associated with a macro, but what that function will return is source code, and what you will then need to do with that source code is evaluate it. If you want a function which deals with run-time data which is not source code, then you need that function, and you can't turn a macro into that function by some magic trick which seems to be what you want to do: that magic trick does not, and can not, exist.
So for instance if I have a macro
(defmacro with-x (&body forms)
`(let ((x 1))
,#forms))
Then I can call its macro function on a bit of source code:
> (funcall (macro-function 'with-x)
'(with-x (print "foo")) nil)
(let ((x 1)) (print "foo"))
But the result of this is another bit of source code: I need to compile or evaluate it, and nothing I can do will get around this.
Indeed in (almost?) all cases this is just the same as macroexpand-1):
> (macroexpand-1 '(with-x (print "foo")))
(let ((x 1)) (print "foo"))
t
And you can probably write macroexpand-1 in terms of macro-function:
(defun macroexpand-1/equivalent (form &optional (env nil))
(if (and (consp form)
(symbolp (first form))
(macro-function (first form)))
(values (funcall (macro-function (first form)) form env)
t)
(values form nil)))
So, if the result of calling a macro is source code, what do you do with that source code to get a result which is not source code? Well, you must evaluate it. And then, well, since the evaluator expands macros for you anyway, you might as well just write something like
(defun evaluate-with-x (code)
(funcall (compile nil `(lambda ()
(with-x ,#code)))))
So you didn't need to call the macro's function in any case. And this is not the magic trick which turns macros into functions dealing with data which is not source code: it is a terrible horror which is entirely made of exploding parts.
A concrete example: CL-WHO
It looks like this question might have its origins in this one and the underlying problem there is that that's not what CL-WHO does. In particular it is a confusion to think that something like CL-WHO is a tool for taking some kind of list and turning it into HTML. It's not: it's a tool for taking the source code of a language which is built on CL but includes a way of expressing HTML output mingled with CL code, and compiles it into CL code which will do the same thing. It happens to be the case that CL source code is expressed as lists & symbols, but CL-WHO isn't really about that: it's a compiler from, if you like, 'the CL-WHO language' to CL.
So, let's try the trick we tried above and see why it's a disaster:
(defun form->html/insane (form)
(funcall
(compile nil `(lambda ()
(with-html-output-to-string (,(make-symbol "O"))
,#form)))))
And you might, if you did not look at this too closely, think that this function does in fact do the magic trick:
> (form->html/insane '(:p ((:a :href "foo") "the foo")))
"<p></p><a href='foo'>the foo</a>"
But it doesn't. What happens if we call form->html/insane on this perfectly innocuous list:
(:p (uiop/run-program:run-program "rm -rf $HOME" :output t))
Hint: don't call form->html/insane on this list if you don't have very good backups.
CL-WHO is an implementation of a programming language which is a strict superset of CL: if you try to turn it into a function to turn lists into HTML you end up with something involving the same nuclear weapon you tinker with every time you call eval, except that nuclear weapon is hidden inside a locked cupboard where you can't see it. But it doesn't care about that: if you set it off it will still reduce everything within a few miles to radioactive ash and rubble.
So if you want a tool which will turn lists – lists which aren't source code – into HTML then write that tool. CL-WHO might have the guts of such a tool in its implemenentation, but you can't use it as it is.
And this is the same problem you face whenever you are trying to abuse macros this way: the result of calling a macro's function is Lisp source code, and to evaluate that source code you need eval or an equivalent of eval. And eval is not only not a terrible solution to almost any problem: it's also a nuclear weapon. There are, perhaps problems for which nuclear weapons are good solutions, but they are few and far between.
AND and OR are macros and since macros aren't first class in scheme/racket they cannot be passed as arguments to other functions. A partial solution is to use and-map or or-map. Is it possible to write a function that would take arbitrary macro and turn it into a function so that it can be passed as an argument to another function? Are there any languages that have first class macros?
In general, no. Consider that let is (or could be) implemented as a macro on top of lambda:
(let ((x 1))
(foo x))
could be a macro that expands to
((lambda (x) (foo x)) 1)
Now, what would it look like to convert let to a function? Clearly it is nonsense. What would its inputs be? Its return value?
Many macros will be like this. In fact, any macro that could be routinely turned into a function without losing any functionality is a bad macro! Such a macro should have been a function to begin with.
I agree with #amalloy. If something is written as a macro, it probably does something that functions can't do (e.g., introduce bindings, change evaluation order). So automatically converting arbitrary macro into a function is a really bad idea even if it is possible.
Is it possible to write a function that would take arbitrary macro and turn it into a function so that it can be passed as an argument to another function?
No, but it is somewhat doable to write a macro that would take some macro and turn it into a function.
#lang racket
(require (for-syntax racket/list))
(define-syntax (->proc stx)
(syntax-case stx ()
[(_ mac #:arity arity)
(with-syntax ([(args ...) (generate-temporaries (range (syntax-e #'arity)))])
#'(λ (args ...) (mac args ...)))]))
((->proc and #:arity 2) 42 12)
(apply (->proc and #:arity 2) '(#f 12))
((->proc and #:arity 2) #f (error 'not-short-circuit))
You might also be interested in identifier macro, which allows us to use an identifier as a macro in some context and function in another context. This could be used to create a first class and/or which short-circuits when it's used as a macro, but could be passed as a function value in non-transformer position.
On the topic of first class macro, take a look at https://en.wikipedia.org/wiki/Fexpr. It's known to be a bad idea.
Not in the way you probably expect
To see why, here is a way of thinking about macros: A macro is a function which takes a bit of source code and turns it into another bit of source code: the expansion of the macro. In other words a macro is a function whose domain and range are source code.
Once the source code is fully expanded, then it's fed to either an evaluator or a compiler. Let's assume it's fed to a compiler because it makes the question easier to answer: a compiler itself is simply a function whose domain is source code and whose range is some sequence of instructions for a machine (which may or may not be a real machine) to execute. Those instructions might include things like 'call this function on these arguments'.
So, what you are asking is: can the 'this function' in 'call this function on these arguments' be some kind of macro? Well, yes, it could be, but whatever source code it is going to transform certainly can not be the source code of the program you are executing, because that is gone: all that's left is the sequence of instructions that was the return value of the compiler.
So you might say: OK, let's say we disallow compilers: can we do it now? Well, leaving aside that 'disallowing compilers' is kind of a serious limitation, this was, in fact, something that very old dialects of Lisp sort-of did, using a construct called a FEXPR, as mentioned in another answer. It's important to realise that FEXPRs existed because people had not yet invented macros. Pretty soon, people did invent macros, and although FEXPRs and macros coexisted for a while – mostly because people had written code which used FEXPRs which they wanted to keep running, and because writing macros was a serious pain before things like backquote existed – FEXPRs died out. And they died out because they were semantically horrible: even by the standards of 1960s Lisps they were semantically horrible.
Here's one small example of why FEXPRs are so horrible: Let's say I write this function in a language with FEXPRs:
(define (foo f g x)
(apply f (g x)))
Now: what happens when I call foo? In particular, what happens if f might be a FEXPR?. Well, the answer is that I can't compile foo at all: I have to wait until run-time and make some on-the-fly decision about what to do.
Of course this isn't what these old Lisps with FEXPRs probably did: they would just silently have assumed that f was a normal function (which they would have called an EXPR) and compiled accordingly (and yes, even very old Lisps had compilers). If you passed something which was a FEXPR you just lost: either the thing detected that, or more likely it fall over horribly or gave you some junk answer.
And this kind of horribleness is why macros were invented: macros provide a semantically sane approach to processing Lisp code which allows (eventually, this took a long time to actually happen) minor details like compilation being possible at all, code having reasonable semantics and compiled code having the same semantics as interpreted code. These are features people like in their languages, it turns out.
Incidentally, in both Racket and Common Lisp, macros are explicitly functions. In Racket they are functions which operate on special 'syntax' objects because that's how you get hygiene, but in Common Lisp, which is much less hygienic, they're just functions which operate on CL source code, where the source code is simply made up of lists, symbols &c.
Here's an example of this in Racket:
> (define foo (syntax-rules ()
[(_ x) x]))
> foo
#<procedure:foo>
OK, foo is now just an ordinary function. But it's a function whose domain & range are Racket source code: it expects a syntax object as an argument and returns another one:
> (foo 1)
; ?: bad syntax
; in: 1
; [,bt for context]
This is because 1 is not a syntax object.
> (foo #'(x 1))
#<syntax:readline-input:5:10 1>
> (syntax-e (foo #'(x 1)))
1
And in CL this is even easier to see: Here's a macro definition:
(defmacro foo (form) form)
And now I can get hold of the macro's function and call it on some CL source code:
> (macro-function 'foo)
#<Function foo 4060000B6C>
> (funcall (macro-function 'foo) '(x 1) nil)
1
In both Racket and CL, macros are, in fact, first-class (or, in the case of Racket: almost first-class, I think): they are functions which operate on source code, which itself is first-class: you can write Racket and CL programs which construct and manipulate source code in arbitrary ways: that's what macros are in these languages.
In the case of Racket I have said 'almost first-class', because I can't see a way, in Racket, to retrieve the function which sits behind a macro defined with define-syntax &c.
I've created something like this in Scheme, it's macro that return lambda that use eval to execute the macro:
(define-macro (macron m)
(let ((x (gensym)))
`(lambda (,x)
(eval `(,',m ,#,x)))))
Example usage:
;; normal eval
(define x (map (lambda (x)
(eval `(lambda ,#x)))
'(((x) (display x)) ((y) (+ y y)))))
;; using macron macro
(define x (map (macron lambda)
'(((x) (display x)) ((y) (+ y y)))))
and x in both cases is list of two functions.
another example:
(define-macro (+++ . args)
`(+ ,#args))
((macron +++) '(1 2 3))
I'm trying to write a small system of macros to do iterative tasks in Emacs Lisp. I had taken it for granted that there is nothing beyond while loop. No more primitives or some hidden features, but I decided, I'd better ask.
By "hidden features" I mean something akin to tagbody in Common Lisp, i.e. the very primitive form to model the code in terms of blocks, jumps and labels. Are there any such thing in eLisp? Not even in any "hackish" way, like, for example, through the bytecode? Of course, I know about (catch ... (throw ... )) construct, but it is not quite the same, because it only allows jumping "backwards", but never forward. I also assumed it is a rather complex construct, not suitable for building fast iteration primitives.
Another thing that bugs me is that there doesn't seem to be a way to create an iterator for hash-tables. I.e. a hash-table must be itereated using maphash and once you exit the maphash function, there's no coming back to where you left it. So far I understand, it has to do something like, exporting a vector of keys and a vector of values and iterating over these, but there doesn't seem to be a way to get hold of these vectors / lists / whichever those are. Or am I again wrong?
I've looked into how cl package generates code for loop and dotimes / dolist / do, but they just use while or maphash, whichever is appropriate, and, frankly, I'm not so fond of their code... More than that, if, say, in the loop there are two for-as-hash clauses, they simply ignore the first (you don't even get a warning for that) and generate code for the second :|
Any chance there are some tricks to get hold of these iteration primitives from the user code in eLisp? If not, how feasible it is, and is it really, to write an extension in C?
You can tagbody as a macro:
(defmacro cl-tagbody (&rest tags-or-stmts)
(let ((blocks '()))
(let ((block (list 'cl--preamble)))
(dolist (tag-or-stmt tags-or-stmts)
(if (consp tag-or-stmt) (push tag-or-stmt block)
;; Add a "go to next block" to implement the fallthrough.
(push (nreverse (cons `(go ,tag-or-stmt) block)) blocks)
(setq block (list tag-or-stmt))))
(push (nreverse (cons `(go cl--exit) block)) blocks))
(let ((catch-tag (make-symbol "cl--tagbody-tag")))
(macroexpand-all
`(let ((next-tag 'cl--preamble))
(while
(not (eq (setq next-tag
(catch ',catch-tag
(cl-case next-tag
,#blocks)))
'cl--exit))))
`((go . (lambda (tag) `(throw ',catch-tag ',tag)))
,#macroexpand-all-environment)))))
1. Other looping constructs?
The only general-purpose built-in looping construct in Emacs Lisp is while (see eval.c). The macros dolist and dotimes (in subr.el) are both implemented using while.
There are also built-in functions for mapping over various data structures: mapatoms, mapc, mapcar, map-char-table, mapconcat, maphash, and map-keymap. But these are implemented in such a way that you can't interleave their execution with other Lisp code (see for example maphash in fns.c). If you want to loop over two such data structures, you have to loop over one and then over the other.
So I think you're basically out of luck.
2. Extensions?
Emacs is deliberately designed not to have dynamic C-level extensions, to make it more difficult for someone to mount an "embrace and extend" attack on the freedom of Emacs users (see the emacs-devel thread starting here, for example).
So if you want to add C-level functionality, you have to edit the source code. Good luck!
I've heard that Lisp's macro system is very powerful. However, I find it difficult to find some practical examples of what they can be used for; things that would be difficult to achieve without them.
Can anyone give some examples?
Source code transformations. All kinds. Examples:
New control flow statements: You need a WHILE statement? Your language doesn't have one? Why wait for the benevolent dictator to maybe add one next year. Write it yourself. In five minutes.
Shorter code: You need twenty class declarations that almost look identical - only a limited amount of places are different. Write a macro form that takes the differences as parameter and generates the source code for you. Want to change it later? Change the macro in one place.
Replacements in the source tree: You want to add code into the source tree? A variable really should be a function call? Wrap a macro around the code that 'walks' the source and changes the places where it finds the variable.
Postfix syntax: You want to write your code in postfix form? Use a macro that rewrites the code to the normal form (prefix in Lisp).
Compile-time effects: You need to run some code in the compiler environment to inform the development environment about definitions? Macros can generate code that runs at compile time.
Code simplifications/optimizations at compile-time: You want to simplify some code at compile time? Use a macro that does the simplification - that way you can shift work from runtime to compile time, based on the source forms.
Code generation from descriptions/configurations: You need to write a complex mix of classes. For example your window has a class, subpanes have classes, there are space constraints between panes, you have a command loop, a menu and a whole bunch of other things. Write a macro that captures the description of your window and its components and creates the classes and the commands that drive the application - from the description.
Syntax improvements: Some language syntax looks not very convenient? Write a macro that makes it more convenient for you, the application writer.
Domain specific languages: You need a language that is nearer to the domain of your application? Create the necessary language forms with a bunch of macros.
Meta-linguistic abstraction
The basic idea: everything that is on the linguistic level (new forms, new syntax, form transformations, simplification, IDE support, ...) can now be programmed by the developer piece by piece - no separate macro processing stage.
Pick any "code generation tool". Read their examples. That's what it can do.
Except you don't need to use a different programming language, put any macro-expansion code where the macro is used, run a separate command to build, or have extra text files sitting on your hard disk that are only of value to your compiler.
For example, I believe reading the Cog example should be enough to make any Lisp programmer cry.
Anything you'd normally want to have done in a pre-processor?
One macro I wrote, is for defining state-machines for driving game objects. It's easier to read the code (using the macro) than it is to read the generated code:
(def-ai ray-ai
(ground
(let* ((o (object))
(r (range o)))
(loop for p in *players*
if (line-of-sight-p o p r)
do (progn
(setf (target o) p)
(transit seek)))))
(seek
(let* ((o (object))
(target (target o))
(r (range o))
(losp (line-of-sight-p o target r)))
(when losp
(let ((dir (find-direction o target)))
(setf (movement o) (object-speed o dir))))
(unless losp
(transit ground)))))
Than it is to read:
(progn
(defclass ray-ai (ai) nil (:default-initargs :current 'ground))
(defmethod gen-act ((ai ray-ai) (state (eql 'ground)))
(macrolet ((transit (state)
(list 'setf (list 'current 'ai) (list 'quote state))))
(flet ((object ()
(object ai)))
(let* ((o (object)) (r (range o)))
(loop for p in *players*
if (line-of-sight-p o p r)
do (progn (setf (target o) p) (transit seek)))))))
(defmethod gen-act ((ai ray-ai) (state (eql 'seek)))
(macrolet ((transit (state)
(list 'setf (list 'current 'ai) (list 'quote state))))
(flet ((object ()
(object ai)))
(let* ((o (object))
(target (target o))
(r (range o))
(losp (line-of-sight-p o target r)))
(when losp
(let ((dir (find-direction o target)))
(setf (movement o) (object-speed o dir))))
(unless losp (transit ground)))))))
By encapsulating the whole state-machine generation in a macro, I can also ensure that I only refer to defined states and warn if that is not the case.
With macros you can define your own syntax, thus you extend Lisp and make it
suited for the programs you write.
Check out the, very good, online book Practical Common Lisp, for practical examples.
7. Macros: Standard Control Constructs
8. Macros: Defining Your Own
Besides extending the language's syntax to allow you to express yourself more clearly, it also gives you control over evaluation. Try writing your own if in your language of choice so that you can actually write my_if something my_then print "success" my_else print "failure" and not have both print statements get evaluated. In any strict language without a sufficiently powerful macro system, this is impossible. No Common Lisp programmers would find the task too challenging, though. Ditto for for-loops, foreach loops, etc. You can't express these things in C because they require special evaluation semantics (people actually tried to introduce foreach into Objective-C, but it didn't work well), but they are almost trivial in Common Lisp because of its macros.
R, the standard statistics programming language, has macros (R manual, chapter 6). You can use this to implement the function lm(), which analyzes data based on a model that you specify as code.
Here's how it works: lm(Y ~ aX + b, data) will try to find a and b parameters that best fit your data. The cool part is, you can substitute any linear equation for aX + b and it will still work. It's a brilliant feature to make statistics computation easier, and it only works so elegantly because lm() can analyze the equation it's given, which is exactly what Lisp macros do.
Just a guess -- Domain Specific Languages.
Macros are essential in providing access to language features. For instance, in TXR Lisp, I have a single function called sys:capture-cont for capturing a delimited continuation. But this is awkward to use by itself. So there are macros wrapped around it, such as suspend, or obtain and yield which provide alternative models for resumable, suspended execution. They are implemented here.
Another example is the complex macro defstruct which provides syntax for defining a structure type. It compiles its arguments into lambda-s and other material which is passed to the function make-struct-type. If programs used make-struct-type directly for defining OOP structures, they would be ugly:
1> (macroexpand '(defstruct foo bar x y (z 9) (:init (self) (setf self.x 42))))
(sys:make-struct-type 'foo 'bar '()
'(x y z) ()
(lambda (#:g0101)
(let ((#:g0102 (struct-type #:g0101)))
(unless (static-slot-p #:g0102 'z)
(slotset #:g0101 'z
9)))
(let ((self #:g0101))
(setf (qref self x)
42)))
())
Yikes! There is a lot going on that has to be right. For instance, we don't just stick a 9 into slot z because (due to inheritance) we could actually be the base structure of a derived structure, and in the derived structure, z could be a static slot (shared by instances). We would be clobbering the value set up for z in the derived class.
In ANSI Common Lisp, a nice example of a macro is loop, which provides an entire sub-language for parallel iteration. A single loop invocation can express an entire complicated algorithm.
Macros let us think independently about the syntax we would like in a language feature, and the underlying functions or special operators required to implement it. Whatever choices we make in these two, macros will bridge them for us. I don't have to worry that make-struct is ugly to use, so I can focus on the technical aspects; I know that the macro can look the same regardless of how I make various trade-offs. I made the design decision that all struct initialization is going to be done by some functions registered to the type. Okay, that means that my macro has to take all the initializations in the slot-defining syntax, and compile the anonymous functions, where the slot initialization is done by code generated in the bodies.
Macros are compilers for bits of syntax, for which functions and special operators are the target language.
Sometimes people (non-Lisp people, usually) criticize macros in this way: macros don't add any capabilities, only syntactic sugar.
Firstly, syntactic sugar is a capability.
Secondly, you also have to consider macros from a "total hacker perspective": combining macros with implementation-level work. If I'm adding features to a Lisp dialect, such as structures or continuations, I am actually extending the power. The involvement of macros in that enterprise is essential. Even though macros aren't the source of the new power (it doesn't emanate from the macros themselves), they help tame and harness it, giving it expression.
If you don't have sys:capture-cont, you can't just hack up its behavior with a suspend macro. But if you don't have macros, then you have to do something awfully inconvenient to provide access to a new feature that isn't a library function, namely hard-coding some new phrase structure rules into a parser.
I've been working through Practical Common Lisp and as an exercise decided to write a macro to determine if a number is a multiple of another number:
(defmacro multp (value factor)
`(= (rem ,value ,factor) 0))
so that :
(multp 40 10)
evaluates to true whilst
(multp 40 13)
does not
The question is does this macro leak in some way? Also is this "good" Lisp? Is there already an existing function/macro that I could have used?
Siebel gives an extensive rundown (for simple cases anyway) of possible sources of leaks, and there aren't any of those here. Both value and factor are evaluated only once and in order, and rem doesn't have any side effects.
This is not good Lisp though, because there's no reason to use a macro in this case. A function
(defun multp (value factor)
(zerop (rem value factor)))
is identical for all practical purposes. (Note the use of zerop. I think it makes things clearer in this case, but in cases where you need to highlight, that the value you're testing might still be meaningful if it's something other then zero, (= ... 0) might be better)
Your macro looks fine to me. I don't know what a leaky macro is, but yours is pretty straightforward and doesn't require any gensyms. As far as if this is "good" Lisp, my rule of thumb is to use a macro only when a function won't do, and in this case a function can be used in place of your macro. However, if this solution works for you there's no reason not to use it.
Well, in principle, a user could do this:
(flet ((= (&rest args) nil))
(multp 40 10))
which would evaluate to NIL... except that ANSI CL makes it illegal to rebind most standard symbols, including CL:=, so you're on the safe side in this particular case.
In generial, of course, you should be aware of both referential untransparency (capturing identifiers from the context the macro is expanded in) and macro unhygiene (leaking identifiers to expanded code).
No, no symbol introduced in the macro's "lexical closure" is released to the outside.
Note that leaking isn't NECESSARILY a bad thing, even if accidental leaking almost always is. For one project I worked on, I found that a macro similar to this was useful:
(defmacro ana-and (&rest forms)
(loop for form in (reverse forms)
for completion = form then `(let ((it ,form))
(when it
,completion))
finally (return completion)))
This allowed me to get "short-circuiting" of things needed to be done in sequence, with arguments carried over from previous calls in the sequence (and a failure signalled by returning NIL). The specific context this code is from is for a hand-written parser for a configuration file that has a cobbled-together-enough syntax that writing a proper parser using a parser generator was more work than hand-rolling.