Scala - return a function from a map - scala

In scala, how would i declare & instantiate a map that returns a function (for the sake of argument? A function that accepts two variables, one a String, one an Int)?
I am envisioning:
val myMap = Map[String, (String,Int)=>Boolean](
WHAT GOES HERE???
)
Let's just map the string "a" to this cool function. I don't care much about what the function does - returns true, perhaps?

Try this:
val myMap = Map[String, (String, Int) => Boolean](
"Test" -> ((s, i) => true)
)

you can do something like this:
val map = Map("key" -> { (str: String, n: Int) =>
str.indexOf(n) == -1
})
result:
> map: scala.collection.immutable.Map[String,(String, Int) => Boolean] = Map(key - <function2>)

Related

No implicits found for parameter ev: Any <:< (T_, U_)

I'm trying to create a map based on conditions. Here's the general workflow in pseudocode:
def createMyMap(input: String): Map[String, String] = {
val stringArray = input.split(",")
stringArray.map(element => {
if (condition) {
newKey -> newVal
}
}).toMap
}
and I see two compile errors:
No implicits found for parameter ev: Any <:< (T_, U_) in the toMap call
For the method createMyMap
Type mismatch.
Required: scala.Predef.Map [String, String]
Found: scala.collection.immutable.Map[Nothing, Nothing]
This makes sense since the compiler doesn't know how to create the map if the condition isn't fulfilled. For example, if I add this in the method:
if (condition) {
newKey -> new Val
} else {
null
}
then it'll compile. I'm just not too sure how to approach the else - how do I avoid this kind of problem? I'm running into this because I only want to create a map entry if a condition is fulfilled.
It's not clear how newKey and newVal are derived, but here is the template code using collect
def createMyMap(input: String): Map[String, String] =
input.split(",").collect {
case s if <condition> =>
newKey -> newVal
}.to(Map)
e.g.
def createMyMap(input: String): Map[String, String] =
input.split(",").collect {
case s if s.contains('.') =>
s -> "data"
}.to(Map)
You have a few good options that I'll summarize from the comments:
filter + map + toMap
// stringArray: Traversable[String]
// condition: String => Boolean
// transform: String => (String, String)
val result: Map[String, String] = stringArray
.filter(condition)
.map(transform)
.toMap
map + flatten + toMap
val result: Map[String, String] = stringArray
.map { k =>
if (condition(k)) Some(transform(k))
else None
}
.flatten
.toMap
flatMap + toMap
val result: Map[String, String] = stringArray
.flatMap { k =>
if (condition(k)) Some(transform(k))
else None
}
.toMap
collect + toMap
val result: Map[String, String] = stringArray
.collect {
case k if condition(s) => transform(k)
}
.toMap
See documentation.
In short, methods 3 and 4 are especially clean (although all are good IMO). However, the one that is semantically the most readable IMO is 4, which uses collect (with option 1 being a close second).

group by with foldleft scala

I have the following list in input:
val listInput1 =
List(
"itemA,CATs,2,4",
"itemA,CATS,3,1",
"itemB,CATQ,4,5",
"itemB,CATQ,4,6",
"itemC,CARC,5,10")
and I want to write a function in scala using groupBy and foldleft ( just one function) in order to sum up third and fourth colum for lines having the same title(first column here), the wanted output is :
val listOutput1 =
List(
"itemA,CATS,5,5",
"itemB,CATQ,8,11",
"itemC,CARC,5,10"
)
def sumIndex (listIn:List[String]):List[String]={
listIn.map(_.split(",")).groupBy(_(0)).map{
case (title, label) =>
"%s,%s,%d,%d".format(
title,
label.head.apply(1),
label.map(_(2).toInt).sum,
label.map(_(3).toInt).sum)}.toList
}
Kind regards
The logic in your code looks sound, here it is with a case class implemented as that handles edge cases more cleanly:
// represents a 'row' in the original list
case class Item(
name: String,
category: String,
amount: Int,
price: Int
)
// safely converts the row of strings into case class, throws exception otherwise
def stringsToItem(strings: Array[String]): Item = {
if (strings.length != 4) {
throw new Exception(s"Invalid row: ${strings.foreach(print)}; must contain only 4 entries!")
} else {
val n = strings.headOption.getOrElse("N/A")
val cat = strings.lift(1).getOrElse("N/A")
val amt = strings.lift(2).filter(_.matches("^[0-9]*$")).map(_.toInt).getOrElse(0)
val p = strings.lastOption.filter(_.matches("^[0-9]*$")).map(_.toInt).getOrElse(0)
Item(n, cat, amt, p)
}
}
// original code with case class and method above used
listInput1.map(_.split(","))
.map(stringsToItem)
.groupBy(_.name)
.map { case (name, items) =>
Item(
name,
category = items.head.category,
amount = items.map(_.amount).sum,
price = items.map(_.price).sum
)
}.toList
You can solve it with a single foldLeft, iterating the input list only once. Use a Map to aggregate the result.
listInput1.map(_.split(",")).foldLeft(Map.empty[String, Int]) {
(acc: Map[String, Int], curr: Array[String]) =>
val label: String = curr(0)
val oldValue: Int = acc.getOrElse(label, 0)
val newValue: Int = oldValue + curr(2).toInt + curr(3).toInt
acc.updated(label, newValue)
}
result: Map(itemA -> 10, itemB -> 19, itemC -> 15)
If you have a list as
val listInput1 =
List(
"itemA,CATs,2,4",
"itemA,CATS,3,1",
"itemB,CATQ,4,5",
"itemB,CATQ,4,6",
"itemC,CARC,5,10")
Then you can write a general function that can be used with foldLeft and reduceLeft as
def accumulateLeft(x: Map[String, Tuple3[String, Int, Int]], y: Map[String, Tuple3[String, Int, Int]]): Map[String, Tuple3[String, Int, Int]] ={
val key = y.keySet.toList(0)
if(x.keySet.contains(key)){
val oldTuple = x(key)
x.updated(key, (y(key)._1, oldTuple._2+y(key)._2, oldTuple._3+y(key)._3))
}
else{
x.updated(key, (y(key)._1, y(key)._2, y(key)._3))
}
}
and you can call them as
foldLeft
listInput1
.map(_.split(","))
.map(array => Map(array(0) -> (array(1), array(2).toInt, array(3).toInt)))
.foldLeft(Map.empty[String, Tuple3[String, Int, Int]])(accumulateLeft)
.map(x => x._1+","+x._2._1+","+x._2._2+","+x._2._3)
.toList
//res0: List[String] = List(itemA,CATS,5,5, itemB,CATQ,8,11, itemC,CARC,5,10)
reduceLeft
listInput1
.map(_.split(","))
.map(array => Map(array(0) -> (array(1), array(2).toInt, array(3).toInt)))
.reduceLeft(accumulateLeft)
.map(x => x._1+","+x._2._1+","+x._2._2+","+x._2._3)
.toList
//res1: List[String] = List(itemA,CATS,5,5, itemB,CATQ,8,11, itemC,CARC,5,10)
Similarly you can just interchange the variables in the general function so that it can be used with foldRight and reduceRight as
def accumulateRight(y: Map[String, Tuple3[String, Int, Int]], x: Map[String, Tuple3[String, Int, Int]]): Map[String, Tuple3[String, Int, Int]] ={
val key = y.keySet.toList(0)
if(x.keySet.contains(key)){
val oldTuple = x(key)
x.updated(key, (y(key)._1, oldTuple._2+y(key)._2, oldTuple._3+y(key)._3))
}
else{
x.updated(key, (y(key)._1, y(key)._2, y(key)._3))
}
}
and calling the function would give you
foldRight
listInput1
.map(_.split(","))
.map(array => Map(array(0) -> (array(1), array(2).toInt, array(3).toInt)))
.foldRight(Map.empty[String, Tuple3[String, Int, Int]])(accumulateRight)
.map(x => x._1+","+x._2._1+","+x._2._2+","+x._2._3)
.toList
//res2: List[String] = List(itemC,CARC,5,10, itemB,CATQ,8,11, itemA,CATs,5,5)
reduceRight
listInput1
.map(_.split(","))
.map(array => Map(array(0) -> (array(1), array(2).toInt, array(3).toInt)))
.reduceRight(accumulateRight)
.map(x => x._1+","+x._2._1+","+x._2._2+","+x._2._3)
.toList
//res3: List[String] = List(itemC,CARC,5,10, itemB,CATQ,8,11, itemA,CATs,5,5)
So you don't really need a groupBy and can use any of the foldLeft, foldRight, reduceLeft or reduceRight functions to get your desired output.

applying partial function on a tuple field, maintaining the tuple structure

I have a PartialFunction[String,String] and a Map[String,String].
I want to apply the partial functions on the map values and collect the entries for which it was applicaple.
i.e. given:
val m = Map( "a"->"1", "b"->"2" )
val pf : PartialFunction[String,String] = {
case "1" => "11"
}
I'd like to somehow combine _._2 with pfand be able to do this:
val composedPf : PartialFunction[(String,String),(String,String)] = /*someMagicalOperator(_._2,pf)*/
val collected : Map[String,String] = m.collect( composedPf )
// collected should be Map( "a"->"11" )
so far the best I got was this:
val composedPf = new PartialFunction[(String,String),(String,String)]{
override def isDefinedAt(x: (String, String)): Boolean = pf.isDefinedAt(x._2)
override def apply(v1: (String, String)): (String,String) = v1._1 -> pf(v1._2)
}
is there a better way?
Here is the magical operator:
val composedPf: PartialFunction[(String, String), (String, String)] =
{case (k, v) if pf.isDefinedAt(v) => (k, pf(v))}
Another option, without creating a composed function, is this:
m.filter(e => pf.isDefinedAt(e._2)).mapValues(pf)
There is a function in Scalaz, that does exactly that: second
scala> m collect pf.second
res0: scala.collection.immutable.Map[String,String] = Map(a -> 11)
This works, because PartialFunction is an instance of Arrow (a generalized function) typeclass, and second is one of the common operations defined for arrows.

Type of a result after map

I have the followeing classes:
case class RolepermissionRow(roleid: Int, permissionid: Int)
and
case class RolePermissionJSON(
var id: Option[Long],
var num: Option[Int],
var name: Option[String],
var perms: Map[String, Boolean])
I create a map:
var s = Map("1" -> true)
I create a RolePermissionJSON:
val f = RolePermissionJSON(Some(0), Some(0), Some('test'), s)
And I would like to convert the perms Map to RolepermissionRow using the following code:
scala> f.perms.map { case (key, value) => if (value) RolepermissionRow(key.toInt, 1) }.toSeq
res7: Seq[Any] = List(RolepermissionRow(1,1))
The result is Seq[Any] but I would like to have Seq[RolepermissionRow]
Simple changes required:
val z = f.perms.map { case (key, value) if (value) => RolepermissionRow(key.toInt, 1) }.toSeq
Now description:
In your code resulted Seq contains of RolepermissionRows if value is true and Units otherwise.
You should filter out "empty" elements of map that gives you Unit.
UPD:
#nafg advice to use collect to prevent match error in runtime.
f.perms.filter(_._2).map{case (key, value) => RolepermissionRow(key.toInt, 1) }.toSeq
I think you should use filter firstly to filter the map avoid empty Map.

How to apply function to each tuple of a multi-dimensional array in Scala?

I've got a two dimensional array and I want to apply a function to each value in the array.
Here's what I'm working with:
scala> val array = Array.tabulate(2,2)((x,y) => (0,0))
array: Array[Array[(Int, Int)]] = Array(Array((0,0), (0,0)), Array((0,0), (0,0)))
I'm using foreach to extract the tuples:
scala> array.foreach(i => i.foreach(j => println(i)))
[Lscala.Tuple2;#11d559a
[Lscala.Tuple2;#11d559a
[Lscala.Tuple2;#df11d5
[Lscala.Tuple2;#df11d5
Let's make a simple function:
//Takes two ints and return a Tuple2. Not sure this is the best approach.
scala> def foo(i: Int, j: Int):Tuple2[Int,Int] = (i+1,j+2)
foo: (i: Int,j: Int)(Int, Int)
This runs, but need to apply to array(if mutable) or return new array.
scala> array.foreach(i => i.foreach(j => foo(j._1, j._2)))
Shouldn't be to bad. I'm missing some basics I think...
(UPDATE: removed the for comprehension code which was not correct - it returned a one dimensional array)
def foo(t: (Int, Int)): (Int, Int) = (t._1 + 1, t._2 + 1)
array.map{_.map{foo}}
To apply to a mutable array
val array = ArrayBuffer.tabulate(2,2)((x,y) => (0,0))
for (sub <- array;
(cell, i) <- sub.zipWithIndex)
sub(i) = foo(cell._1, cell._2)
2dArray.map(_.map(((_: Int).+(1) -> (_: Int).+(1)).tupled))
e.g.
scala> List[List[(Int, Int)]](List((1,3))).map(_.map(((_: Int).+(1) -> (_: Int).+(1)).tupled))
res123: List[List[(Int, Int)]] = List(List((2,4)))
Dot notation required to force