Reducing dimensionality of data using SOMs - neural-network

As a part of a school project, I had to read a paper by Steven Lawrence about using SOMs and CCNs to detect faces. For those of you who are curious, heres the paper: http://clgiles.ist.psu.edu/papers/UMD-CS-TR-3608.face.hybrid.neural.nets.pdf
On page 12 of the paper, Lawrence describes how he uses the SOMs to reduce the dimensionality of the face data. However, I do not understand how this works. In this example, Lawrence uses a 5x5x5 SOM, with input vectors that are 25D. If my understanding is correct, when the training process is done, you will be left with a 25D vector attached to each of the neurons in the net. So, how did this reduce the dimensions of the data? Where exactly is the reduced-dimension data on a self organizing map? Ive researched in alot of places, but for some reason, I could not find the answer to this question. As this question has been bugging me for awhile now, it would be be greatly appreciated if someone could answer it for me.

Each training set consist in ten images, sampled in a 5x5 grid (this is the 25D vector), so each training set (face) can be viewed as a 250D vector.
Pag 2
There are 10 different images of 40 distinct subjects.
Lawrence used a 3D som with 5 nodes per dimension, wich conforms a (5x5x5) 125D vector that preserves the topological information of the original data.
Pag 12
The SOM quantizes the 25-dimensional input vectors into 125 topologically ordered values. The three dimensions of the SOM can be thought of as three features
You may appreciate that data dimensionality have been reduced by two and space dimensionality have been reduced by five.
Hope this helps

Related

When to use PCA for dimensionality reduction?

I am using the Matlab Classification Learner app to test different classifiers over a training set (size = 700). My response variable is a categorical label with 5 possible values. I have 7 numerical features and 2 categorical ones. I found a Cubic SVM to have the highest accuracy of 83%. But the performance goes down considerably when I enable PCA with 95% explained variance (accuracy = 40.5%). I am a student and this is the first time I am using PCA.
Why do I see such a result?
Could it be because of a small / unbalanced data set?
When is it useful to apply PCA? When we say "reduce dimensionality", is there a minimum number of features (dimensionality) in the original set?
Any help is appreciated. Thanks in advance!
I want to share my opinion
I think training set 700 means, your data is < 1k.
I'm even surprised that svm performs 83%.
Even MNIST dataset is considered to be small (60.000 training - 10.000 test). Your data is much-much smaller.
You try to reduce your small data even smaller using pca. So what will svm learns? There is no discriminating samples left?
If I were you I would test using random-forest classifier. Random-forest might even perform better.
Even if you balanced your data, it is small data.
I believe using SMOTE will not improve the result. If your data consist of images then you could use ImageDataGenerator for replicating your data. Though I'm not sure matlab contains ImageDataGenerator.
You will use PCA, when you have lots of samples. Yet the samples are not directly effecting the accuracy but they are the components of data.
For instance: Let's consider handwritten digit classification data.
From above can we say each pixel is directly effecting the accuracy?
The answer is no? Above the black pixels are not important for the accuracy, therefore to remove them we use pca.
If you want a detailed explanation with a python example. Check out my other answer

Using neural networks (MLP) for estimation

Im new with NN and i have this problem:
I have a dataset with 300 rows and 33 columns. Each row has 3 more columns for the results.
Im trying to use MLP for trainning a model so that when i have a new row, it estimates those 3 result columns.
I can easily reduce the error during trainning to 0.001 but when i use cross validation it keep estimating very poorly.
It estimates correctly if i use the same entry it used to train, but if i use another values that werent used for trainning the results are very wrong
Im using two hidden layers with 20 neurons each, so my architecture is [33 20 20 3]
For activation function im using biporlarsigmoid function.
Do you guys have some suggestion on where i could try to change to improve this?
Overfitting
As mentioned in the comments, this perfectly describes overfitting.
I strongly suggest reading the wikipedia article on overfitting, as it well describes causes, but I'll summarize some key points here.
Model complexity
Overfitting often happens when you model is needlessly complex for the problem. I don't know anything about your dataset, but I'm guessing [33 20 20 3] is more parameters than necessary for predicting.
Try running your cross-validation methods again, this time with either fewer layers, or fewer nodes per layer. Right now you are using 33*20 + 20*20 + 20*3 = 1120 parameters (weights) to make your prediction, is this necessary?
Regularization
A common solution to overfitting is regularization. The driving principle is KISS (keep it simple, stupid).
By applying an L1 regularizer to your weights, you keep preference for the smallest number of weights to solve your problem. The network will pull many weights to 0 as they aren't need.
By applying an L2 regularizer to your weights, you keep preference for lower rank solutions to your problem. This means that your network will prefer weights matrices that span lower dimensions. Practically this means your weights will be smaller numbers, and are less likely to be able to "memorize" the data.
What is L1 and L2? These are types of vector norms. L1 is the sum of the absolute value of your weights. L2 is the sqrt of the sum of squares of your weights. (L3 is the cubed root of the sum of cubes of weights, L4 ...).
Distortions
Another commonly used technique is to augment your training data with distorted versions of your training samples. This only makes sense with certain types of data. For instance images can be rotated, scaled, shifted, add gaussian noise, etc. without dramatically changing the content of the image.
By adding distortions, your network will no longer memorize your data, but will also learn when things look similar to your data. The number 1 rotated 2 degrees still looks like a 1, so the network should be able to learn from both of these.
Only you know your data. If this is something that can be done with your data (even just adding a little gaussian noise to each feature), then maybe this is worth looking into. But do not use this blindly without considering the implications it may have on your dataset.
Careful analysis of data
I put this last because it is an indirect response to the overfitting problem. Check your data before pumping it through a black-box algorithm (like a neural network). Here are a few questions worth answering if your network doesn't work:
Are any of my features strongly correlated with each other?
How do baseline algorithms perform? (Linear regression, logistic regression, etc.)
How are my training samples distributed among classes? Do I have 298 samples of one class and 1 sample of the other two?
How similar are my samples within a class? Maybe I have 100 samples for this class, but all of them are the same (or nearly the same).

PCA on Sift desciptors and Fisher Vectors

I was reading this particular paper http://www.robots.ox.ac.uk/~vgg/publications/2011/Chatfield11/chatfield11.pdf and I find the Fisher Vector with GMM vocabulary approach very interesting and I would like to test it myself.
However, it is totally unclear (to me) how do they apply PCA dimensionality reduction on the data. I mean, do they calculate Feature Space and once it is calculated they perform PCA on it? Or do they just perform PCA on every image after SIFT is calculated and then they create feature space?
Is this supposed to be done for both training test sets? To me it's an 'obviously yes' answer, however it is not clear.
I was thinking of creating the feature space from training set and then run PCA on it. Then, I could use that PCA coefficient from training set to reduce each image's sift descriptor that is going to be encoded into Fisher Vector for later classification, whether it is a test or a train image.
EDIT 1;
Simplistic example:
[coef , reduced_feat_space]= pca(Feat_Space','NumComponents', 80);
and then (for both test and train images)
reduced_test_img = test_img * coef; (And then choose the first 80 dimensions of the reduced_test_img)
What do you think? Cheers
It looks to me like they do SIFT first and then do PCA. the article states in section 2.1 "The local descriptors are fixed in all experiments to be SIFT descriptors..."
also in the introduction section "the following three steps:(i) extraction
of local image features (e.g., SIFT descriptors), (ii) encoding of the local features in an image descriptor (e.g., a histogram of the quantized local features), and (iii) classification ... Recently several authors have focused on improving the second component" so it looks to me that the dimensionality reduction occurs after SIFT and the paper is simply talking about a few different methods of doing this, and the performance of each
I would also guess (as you did) that you would have to run it on both sets of images. Otherwise your would be using two different metrics to classify the images it really is like comparing apples to oranges. Comparing a reduced dimensional representation to the full one (even for the same exact image) will show some variation. In fact that is the whole premise of PCA, you are giving up some smaller features (usually) for computational efficiency. The real question with PCA or any dimensionality reduction algorithm is how much information can I give up and still reliably classify/segment different data sets
And as a last point, you would have to treat both images the same way, because your end goal is to use the Fisher Feature Vector for classification as either test or training. Now imagine you decided training images dont get PCA and test images do. Now I give you some image X, what would you do with it? How could you treat one set of images differently from another BEFORE you've classified them? Using the same technique on both sets means you'd process my image X then decide where to put it.
Anyway, I hope that helped and wasn't to rant-like. Good Luck :-)

When to use k means clustering algorithm?

Can I use k-means algorithm for a single attribute?
Is there any relationship between the attributes and the number of clusters?
I have one attribute's performance, and I want to classify the data into 3 clusters: poor, medium, and good.
Is it possible to create 3 clusters with one attribute?
K-Means is useful when you have an idea of how many clusters actually exists in your space. Its main benefit is its speed. There is a relationship between attributes and the number of observations in your dataset.
Sometimes a dataset can suffer from The Curse of Dimensionality where your number of variables/attributes is much greater than your number of observations. Basically, in high dimensional spaces with few observations, it becomes difficult to separate observations in hyper dimensions.
You can certainly have three clusters with one attribute. Consider the quantitative attribute in which you have 7 observations
1
2
100
101
500
499
501
Notice there are three clusters in this sample centered: 1.5, 100.5, and 500.
If you have one dimensional data, search stackoverflow for better approaches than k-means.
K-means and other clustering algorithms shine when you have multivariate data. They will "work" with 1-dimensional data, but they are not very smart anymore.
One-dimensional data is ordered. If you sort your data (or it even is already sorted), it can be processed much more efficiently than with k-means. Complexity of k-means is "just" O(n*k*i), but if your data is sorted and 1-dimensional you can actually improve k-means to O(k*i). Sorting comes at a cost, but there are very good sort implementations everywhere...
Plus, for 1-dimensional data there is a lot of statistics you can use that are not very well researched or tractable on higher dimensions. One statistic you really should try is kernel density estimation. Maybe also try Jenks Natural Breaks Optimization.
However, if you want to just split your data into poor/medium/high, why don't you just use two thresholds?
As others have answered already, k-means requires prior information about the count of clusters. This may appear to be not very helpful at the start. But, I will cite the following scenario which I worked with and found to be very helpful.
Color segmentation
Think of a picture with 3 channels of information. (Red, Green Blue) You want to quantize the colors into 20 different bands for the purpose of dimensional reduction. We call this as vector quantization.
Every pixel is a 3 dimensional vector with Red, Green and Blue components. If the image is 100 pixels by 100 pixels then you have 10,000 vectors.
R,G,B
128,100,20
120,9,30
255,255,255
128,100,20
120,9,30
.
.
.
Depending on the type of analysis you intend to perform, you may not need all the R,G,B values. It might be simpler to deal with an ordinal representation.
In the above example, the RGB values might be assigned a flat integral representation
R,G,B
128,100,20 => 1
120,9,30 => 2
255,255,255=> 3
128,100,20 => 1
120,9,30 => 2
You run the k-Means algorithm on these 10,000 vectors and specify 20 clusters. Result - you have reduced your image colors to 20 broad buckets. Obviously some information is lost. However, the intuition for this loss being acceptable is that when the human eyes is gazing out over a patch of green meadow, we are unlikely to register all the 16 million RGB colours.
YouTube video
https://www.youtube.com/watch?v=yR7k19YBqiw
I have embedded key pictures from this video for your understanding. Attention! I am not the author of this video.
Original image
After segmentation using K means
Yes it is possible to use clustering with single attribute.
No there is no known relation between number of cluster and the attributes. However there have been some study that suggest taking number of clusters (k)=n\sqrt{2}, where n is the total number of items. This is just one study, different study have suggested different cluster numbers. The best way to determine cluster number is to select that cluster number that minimizes intra-cluster distance and maximizes inter-cluster distance. Also having background knowledge is important.
The problem you are looking with performance attribute is more a classification problem than a clustering problem
Difference between classification and clustering in data mining?
With only one attribute, you don't need to do k-means. First, I would like to know if your attribute is numerical or categorical.
If it's numerical, it would be easier to set up two thresholds. And if it's categorical, things are getting much easier. Just specify which classes belong to poor, medium or good. Then simple data frame operations would be working.
Feel free to send me comments if you are still confused.
Rowen

Few questions about kohonen neural network

I have big data set (time-series, about 50 parameters/values). I want to use Kohonen network to group similar data rows. I've read some about Kohonen neural networks, i understand idea of Kohonen network, but:
I don't know how to implement Kohonen with so many dimensions. I found example on CodeProject, but only with 2 or 3 dimensional input vector. When i have 50 parameters - shall i create 50 weights in my neurons?
I don't know how to update weights of winning neuron (how to calculate new weights?).
My english is not perfect and I don't understand everything I read about Kohonen network, especially descriptions of variables in formulas, thats why im asking.
One should distinguish the dimensionality of the map, which is usually low (e.g. 2 in the common case of a rectangular grid) and the dimensionality of the reference vectors which can be arbitrarily high without problems.
Look at http://www.psychology.mcmaster.ca/4i03/demos/competitive-demo.html for a nice example with 49-dimensional input vectors (7x7 pixel images). The Kohonen map in this case has the form of a one-dimensional ring of 8 units.
See also http://www.demogng.de for a java simulator for various Kohonen-like networks including ring-shaped ones like the one at McMasters. The reference vectors, however, are all 2-dimensional, but only for easier display. They could have arbitrary high dimensions without any change in the algorithms.
Yes, you would need 50 neurons. However, these types of networks are usually low dimensional as described in this self-organizing map article. I have never seen them use more than a few inputs.
You have to use an update formula. From the same article: Wv(s + 1) = Wv(s) + Θ(u, v, s) α(s)(D(t) - Wv(s))
yes, you'll need 50 inputs for each neuron
you basically do a linear interpolation between the neurons and the target (input) neuron, and use W(s + 1) = W(s) + Θ() * α(s) * (Input(t) - W(s)) with Θ being your neighbourhood function.
and you should update all your neurons, not only the winner
which function you use as a neighbourhood function depends on your actual problem.
a common property of such a function is that it has a value 1 when i=k and falls off with the distance euclidian distance. additionally it shrinks with time (in order to localize clusters).
simple neighbourhood functions include linear interpolation (up to a "maximum distance") or a gaussian function