MongoDB Order by two columns - mongodb

Does someone know how can I sort my tables by two values?
For example :
I have stats collections that has columns "_id", "title", "link", "stats", "range".
"stats" column could consist values ['duration','pace', 'distance'],
"range" column could consist velues like 0-10 km, 20-20 min so on depend of stats values.
I'd like to order by stats and after that by range .
This link
In link above I've sorted by stats and now I want to sort by range for each value of stats!
My current code :
guides = yield gen.Task(Guides.objects.find, query={}, limit=20,
sort={'stats': 1})

To order your documents by more than one field, you would need a compound sort statement and ideally a compound index backing it.
For compound indexes in MongoDB see: http://docs.mongodb.org/manual/tutorial/create-a-compound-index/
Your sort would look something like:
guides = yield gen.Task(Guides.objects.find, query={}, limit=20,
sort={'stats': 1, 'range': 1})

You need to use something that is ordered, in this case tuples of arrays, like:
sort([("stats",pymongo.ASCENDING), ("range",pymongo.ASCENDING)])
Since, of course, python dicts are not ordered. That should work I believe.

Related

What is the correct way to Index in MongoDB when big combination of fields exist

Considering I have search pannel that inculude multiple options like in the picture below:
I'm working with mongo and create compound index on 3-4 properties with specific order.
But when i run a different combinations of searches i see every time different order in execution plan (explain()). Sometime i see it on Collection scan (bad) , and sometime it fit right to the index (IXSCAN).
The selective fields that should handle by mongo indexes are:(brand,Types,Status,Warehouse,Carries ,Search - only by id)
My question is:
Do I have to create all combination with all fields with different order , it can be 10-20 compound indexes. Or 1-3 big Compound Index , but again it will not solve the order.
What is the best strategy to deal with big various of fields combinations.
I use same structure queries with different combinations of pairs
// Example Query.
// fields could be different every time according to user select (and order) !!
db.getCollection("orders").find({
'$and': [
{
'status': {
'$in': [
'XXX',
'YYY'
]
}
},
{
'searchId': {
'$in': [
'3859447'
]
}
},
{
'origin.brand': {
'$in': [
'aaaa',
'bbbb',
'cccc',
'ddd',
'eee',
'bundle'
]
}
},
{
'$or': [
{
'origin.carries': 'YYY'
},
{
'origin.carries': 'ZZZ'
},
{
'origin.carries': 'WWWW'
}
]
}
]
}).sort({"timestamp":1})
// My compound index is:
{status:1 ,searchId:-1,origin.brand:1, origin.carries:1 , timestamp:1}
but it only 1 combination ...it could be plenty like
a. {status:1} {b.status:1 ,searchId:-1} {c. status:1 ,searchId:-1,origin.brand:1} {d.status:1 ,searchId:-1,origin.brand:1, origin.carries:1} ........
Additionally , What will happened with Performance write/read ? , I think write will decreased over reads ...
The queries pattern are :
1.find(...) with '$and'/'$or' + sort
2.Aggregation with Match/sort
thanks
Generally, indexes are only useful if they are over a selective field. This means the number of documents that have a particular value is small relative to the overall number of documents.
What "small" means varies on the data set and the query. A 1% selectivity is pretty safe when deciding whether an index makes sense. If an particular value exists in, say, 10% of documents, performing a table scan may be more efficient than using an index over the respective field.
With that in mind, some of your fields will be selective and some will not be. For example, I suspect filtering by "OK" will not be very selective. You can eliminate non-selective fields from indexing considerations - if someone wants all orders which are "OK" with no other conditions they'll end up doing a table scan. If someone wants orders which are "OK" and have other conditions, whatever index is applicable to other conditions will be used.
Now that you are left with selective (or at least somewhat selective) fields, consider what queries are both popular and selective. For example, perhaps brand+type would be such a combination. You could add compound indexes that match popular queries which you expect to be selective.
Now, what happens if someone filters by brand only? This could be selective or not depending on the data. If you already have a compound index on brand+type, you'd leave it up to the database to determine whether a brand only query is more efficient to fulfill via the brand+type index or via a collection scan.
Continue in this manner with other popular queries and fields.
So you have subdocuments, ranged queries, and sorting by 1 field only.
It can eliminate most of the possible permutations. Assuming there are no other surprises.
D. SM already covered selectivity - you should really listen what the man says and at least upvote.
The other things to consider is the order of the fields in the compound index:
fields that have direct match like $eq
fields you sort on
fields with ranged queries: $in, $lt, $or etc
These are common rules for all b-trees. Now things that are specific to mongo:
A compound index can have no more than 1 multikey index - the index by a field in subdocuments like "origin.brand". Again I assume origins are embedded docs, so the document's shape is like this:
{
_id: ...,
status: ...,
timestamp: ....,
origin: [
{brand: ..., carries: ...},
{brand: ..., carries: ...},
{brand: ..., carries: ...}
]
}
For your query the best index would be
{
searchId: 1,
timestamp: 1,
status: 1, /** only if it is selective enough **/
"origin.carries" : 1 /** or brand, depending on data **/
}
Regarding the number of indexes - it depends on data size. Ensure all indexes fit into RAM otherwise it will be really slow.
Last but not least - indexing is not a one off job but a lifestyle. Data change over time, so do queries. If you care about performance and have finite resources you should keep an eye on the database. Check slow queries to add new indexes, collect stats from user's queries to remove unused indexes and free up some room. Basically apply common sense.
I noticed this one-year-old topic, because I am more or less struggling with a similar issue: users can request queries with an unpredictable set of the fields, which makes it near to impossible to decide (or change) how indexes should be defined.
Even worse: the user should indicate some value (or range) for the fields that make up the sharding-key, otherwise we cannot help MongoDB to limit its search in only a few shards (or chunks, for that matter).
When the user needs the liberty to search on other fields that are not necessariy the ones which make up the sharding-key, then we're stuck with a full-database search. Our dbase is some 10's of TB size...
Indexes should fit in RAM ? This can only be achieved with small databases, meaning some 100's GB max. How about my 37 TB database ? Indexes won't fit in RAM.
So I am trying out a POC inspired by the UNIX filesystem structures where we have inodes pointing to data blocks:
we have a cluster with 108 shards, each contains 100 chunks
at insert time, we take some fields of which we know they yield a good cardinality of the data, and we compute the sharding-key with those fields; the document goes into the main collection (call it "Main_col") on that computed shard, so with a certain chunk-number (equals our computed sharding-key value)
from the original document, we take a few 'crucial' fields (the list of such fields can evolve as your needs change) and store a small extra document in another collection (call these "Crucial_col_A", Crucial_col_B", etc, one for each such field): that document contains the value of this crucial field, plus an array with the chunk-number where the original full document has been stored in the 'big' collection "Main_col"; consider this as a 'pointer' to the chunk in collecton "Main_col" where this full document exists. These "Crucial_col_X" collections are sharded based on the value of the 'crucial' field.
when we insert another document that has the same value for some 'crucial' field "A", then that array in "Crucial_col_A" with chunk-numbers with be updated (with 'merge') to contain the different or same chunk number of this next full document from "Main_col"
a user can now define queries with criteria for at least one of those 'crucial' fields, plus (optional) any other criteria on other fields in the documents; the first criterium for the crucial field (say field "B") will run very quickly (because sharded on the value of "B") and return the small document from "Crucial_col_B", in which we have the array of chunk-numbers in "Main_col" where any document exists that has field "B" equal to the given criterium. Then we run a second set of parallel queries, one for each shardkey-value=chunk-number (or one per shard, to be decided) that we find in the array from before. We combine the results of those parallel subqueries, and then apply further filtering if the user gave additional criteria.
Thus this involves 2 query-steps: first in the "Crucial_col_X" collection to obtain the array with chunk-numbers where the full documents exist, and then the second query on those specific chunks in "Main_col".
The first query is done with a precise value for the 'crucial' field, so the exact shard/chunk is known, thus this query goes very fast.
The second (set of) queries are done with precise values for the sharding-keys (= the chunk numbers), so these are expected to go also very fast.
This way of working would eliminate the burden of defining many index combinations.

Fundamental misunderstanding of MongoDB indices

So, I read the following definition of indexes from [MongoDB Docs][1].
Indexes support the efficient execution of queries in MongoDB. Without indexes, MongoDB must perform a collection scan, i.e. scan every document in a collection, to select those documents that match the query statement. If an appropriate index exists for a query, MongoDB can use the index to limit the number of documents it must inspect.
Indexes are special data structures that store a small portion of the
collection’s data set in an easy to traverse form. The index stores
the value of a specific field or set of fields, ordered by the value
of the field. The ordering of the index entries supports efficient
equality matches and range-based query operations. In addition,
MongoDB can return sorted results by using the ordering in the index.
I have a sample database with a collection called pets. Pets have the following structure.
{
"_id": ObjectId(123abc123abc)
"name": "My pet's name"
}
I created an index on the name field using the following code.
db.pets.createIndex({"name":1})
What I expect is that the documents in the collection, pets, will be indexed in ascending order based on the name field during queries. The result of this index can potentially reduce the overall query time, especially if a query is strategically structured with available indices in mind. Under that assumption, the following query should return all pets sorted by name in ascending order, but it doesn't.
db.pets.find({},{"_id":0})
Instead, it returns the pets in the order that they were inserted. My conclusion is that I lack a fundamental understanding of how indices work. Can someone please help me to understand?
Yes, it is misunderstanding about how indexes work.
Indexes don't change the output of a query but the way query is processed by the database engine. So db.pets.find({},{"_id":0}) will always return the documents in natural order irrespective of whether there is an index or not.
Indexes will be used only when you make use of them in your query. Thus,
db.pets.find({name : "My pet's name"},{"_id":0}) and db.pets.find({}, {_id : 0}).sort({name : 1}) will use the {name : 1} index.
You should run explain on your queries to check if indexes are being used or not.
You may want to refer the documentation on how indexes work.
https://docs.mongodb.com/manual/indexes/
https://docs.mongodb.com/manual/tutorial/sort-results-with-indexes/

mongodb: create a top-level index for a nested document instead of having to index each individual sublevel?

This question is about how I can use indexes in MongoDB to look something up in nested documents, without having to index each individual sublevel.
I have a collection "test" in MongoDB which basically goes something like this:
{
"_id" : ObjectId("50fdd7d71d41c82875a5b6c1"),
"othercol" : "bladiebla",
"scenario" : {
"1" : { [1,2,3] },
"2" : { [4,5,6] }
}}
Scenario has multiple keys, each document can have any subset of the scenarios (i.e. from none to a subset to all). Also: Scenario can't be an array because i need it as a dictionary in Python. I created an index on the "scenario" field.
My issue is that i want to select on the collection, filtering for documents that have a certain value. So this works fine functionally:
db.test.find({"scenario.1": {$exists: true}})
However, it won't use any index i've put on scenario. Only if i put an index on the "scenario.1" an index is used. But I can have thousands (or more) scenarios (and the collection itself has 100.000s of records), so i would prefer not to!
So i tried alternatives:
db.test.find({"scenario": "1"})
This will use the index on scenario, but won't return results. Making scenario an array still gives the same index issue.
Is my question clear? Can anyone give a pointer on how I could achieve the best performance here?
P.s. I have seen this: How to Create a nested index in MongoDB? but that solution is not possible in my case (due to the amount of scenarios)
Putting an index on a subobject like scenario is useless in this case as it would only be used when you're filtering on complete scenario objects rather than individual fields (think of it as a binary blob comparison).
You either need to add an index on each of your possible fields ("scenario.1", "sceanario.2", etc.) or rework your schema to get rid of the dynamic keys by doing something like this:
{
"_id" : ObjectId("50fdd7d71d41c82875a5b6c1"),
"othercol" : "bladiebla",
"scenario" : [
{ id: "1", value: [1,2,3] },
{ id: "2", value: [4,5,6] }
}}
Then you can add a single index to scenario.id to support the queries you need to perform.
I know you said you need scenario to be a dict and not an array, but I don't see how you have much choice.
Johnny HK's answer is a nice explained answer and should be used in general cases. I will just suggest a workaround for you to solve your issue if you have to have many scenarios and don't need complex querying. Instead of keeping values under scenario field, just hold the id of the scenario under that field, and hold the values as another field in the document and use the scenario id as the key of this field.
Example:
{
"_id" : ObjectId("50fdd7d71d41c82875a5b6c1"),
"othercol" : "bladiebla",
"scenario" : [ "1", "2"],
"scenario_1": [1,2,3],
"scenario_2": [4,5,6]
}}
With this schema you can use index on scenario to find specific scenarios. But if you need to query for specific scenario values, you again need to have an index on each scenario value field i.e scenario_1, scenario_2, etc.. If you need to have indexes for each field, then don't change your original schema and use sparse indexes for each nested field and that might help reduce the size of your indexes.

Sorting on Multiple fields mongo DB

I have a query in mongo such that I want to give preference to the first field and then the second field.
Say I have to query such that
db.col.find({category: A}).sort({updated: -1, rating: -1}).limit(10).explain()
So I created the following index
db.col.ensureIndex({category: 1, rating: -1, updated: -1})
It worked just fined scanning as many objects as needed, i.e. 10.
But now I need to query
db.col.find({category: { $ne: A}}).sort({updated: -1, rating: -1}).limit(10)
So I created the following index:
db.col.ensureIndex({rating: -1, updated: -1})
but this leads to scanning of the whole document and when I create
db.col.ensureIndex({ updated: -1 ,rating: -1})
It scans less number of documents:
I just want to ask to be clear about sorting on multiple fields and what is the order to be preserved when doing so. By reading the MongoDB documents, it's clear that the field on which we need to perform sorting should be the last field. So that is the case I assumed in my $ne query above. Am I doing anything wrong?
The MongoDB query optimizer works by trying different plans to determine which approach works best for a given query. The winning plan for that query pattern is then cached for the next ~1,000 queries or until you do an explain().
To understand which query plans were considered, you should use explain(1), eg:
db.col.find({category:'A'}).sort({updated: -1}).explain(1)
The allPlans detail will show all plans that were compared.
If you run a query which is not very selective (for example, if many records match your criteria of {category: { $ne:'A'}}), it may be faster for MongoDB to find results using a BasicCursor (table scan) rather than matching against an index.
The order of fields in the query generally does not make a difference for the index selection (there are a few exceptions with range queries). The order of fields in a sort does affect the index selection. If your sort() criteria does not match the index order, the result data has to be re-sorted after the index is used (you should see scanAndOrder:true in the explain output if this happens).
It's also worth noting that MongoDB will only use one index per query (with the exception of $ors).
So if you are trying to optimize the query:
db.col.find({category:'A'}).sort({updated: -1, rating: -1})
You will want to include all three fields in the index:
db.col.ensureIndex({category: 1, updated: -1, rating: -1})
FYI, if you want to force a particular query to use an index (generally not needed or recommended), there is a hint() option you can try.
That is true but there are two layers of ordering you have here since you are sorting on a compound index.
As you noticed when the first field of the index matches the first field of sort it worked and the index was seen. However when working the other way around it does not.
As such by your own obersvations the order needed to be preserved is query order of fields from first to last. The mongo analyser can sometimes move around fields to match an index but normally it will just try and match the first field, if it cannot it will skip it.
try this code it will sort data first based on name then keeping the 'name' in key holder it will sort 'filter'
var cursor = db.collection('vc').find({ "name" : { $in: [ /cpu/, /memo/ ] } }, { _id: 0, }).sort( { "name":1 , "filter": 1 } );
Sort and Index Use
MongoDB can obtain the results of a sort operation from an index which
includes the sort fields. MongoDB may use multiple indexes to support
a sort operation if the sort uses the same indexes as the query
predicate. ... Sort operations that use an index often have better
performance than blocking sorts.
db.restaurants.find().sort( { "borough": 1, "_id": 1 } )
more information :
https://docs.mongodb.com/manual/reference/method/cursor.sort/

MongoDB : Indexes order and query order must match?

This question concern the internal method to manage indexes and serching Bson Documents.
When you create a multiple indexes like "index1", "index2", "index3"...the index are stored to be used during queries, but what about the order of queries and the performance resulting.
sample
index1,index2,index3----> query in the same order index1,index2,index3 (best case)
index1,index2,index3----> query in another order index2,index1,index3 (the order altered)
Many times you use nested queries including these 3 index and others items or more indexes. The order of the queries would implicate some time lost?. Must passing the queries respecting the indexes order defined or the internal architecture take care about this order search? I searching to know if i do take care about this or can make my queries in freedom manier.
Thanks.
The order of the conditions in your query does not affect whether it can use an index or no.
e.g.
typical document structure:
{
"FieldA" : "A",
"FieldB" : "B"
}
If you have an compound index on A and B :
db.MyCollection.ensureIndex({FieldA : 1, FieldB : 1})
Then both of the following queries will be able to use that index:
db.MyCollection.find({FieldA : "A", FieldB : "B"})
db.MyCollection.find({FieldB : "B", FieldA : "A"})
So the ordering of the conditions in the query do not prevent the index being used - which I think is the question you are asking.
You can easily test this out by trying the 2 queries in the shell and adding .explain() after the find. I just did this to confirm, and they both showed that the compound index was used.
however, if you run the following query, this will NOT use the index as FieldA is not being queried on:
db.MyCollection.find({FieldB : "B"})
So it's the ordering of the fields in the index that defines whether it can be used by a query and not the ordering of the fields in the query itself (this was what Lucas was referring to).
From http://www.mongodb.org/display/DOCS/Indexes:
If you have a compound index on
multiple fields, you can use it to
query on the beginning subset of
fields. So if you have an index on
a,b,c
you can use it query on
a
a,b
a,b,c
So yes, order matters. You should clarify your question a bit if you need a more precise answer.